Artykuły w czasopismach na temat „CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhou, Guoqiang, Yi Fan, Jiachen Shi, Yuyuan Lu i Jun Shen. "Conditional Generative Adversarial Networks for Domain Transfer: A Survey". Applied Sciences 12, nr 16 (21.08.2022): 8350. http://dx.doi.org/10.3390/app12168350.
Pełny tekst źródłaLee, Minhyeok, i Junhee Seok. "Estimation with Uncertainty via Conditional Generative Adversarial Networks". Sensors 21, nr 18 (15.09.2021): 6194. http://dx.doi.org/10.3390/s21186194.
Pełny tekst źródłaZhang, Hao, i Wenlei Wang. "Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)". Energies 15, nr 18 (8.09.2022): 6569. http://dx.doi.org/10.3390/en15186569.
Pełny tekst źródłaZand, Jaleh, i Stephen Roberts. "Mixture Density Conditional Generative Adversarial Network Models (MD-CGAN)". Signals 2, nr 3 (1.09.2021): 559–69. http://dx.doi.org/10.3390/signals2030034.
Pełny tekst źródłaZhen, Hao, Yucheng Shi, Jidong J. Yang i Javad Mohammadpour Vehni. "Co-supervised learning paradigm with conditional generative adversarial networks for sample-efficient classification". Applied Computing and Intelligence 3, nr 1 (2022): 13–26. http://dx.doi.org/10.3934/aci.2023002.
Pełny tekst źródłaHuang, Yubo, i Zhong Xiang. "A Metal Character Enhancement Method based on Conditional Generative Adversarial Networks". Journal of Physics: Conference Series 2284, nr 1 (1.06.2022): 012003. http://dx.doi.org/10.1088/1742-6596/2284/1/012003.
Pełny tekst źródłaKyslytsyna, Anastasiia, Kewen Xia, Artem Kislitsyn, Isselmou Abd El Kader i Youxi Wu. "Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks". Sensors 21, nr 21 (8.11.2021): 7405. http://dx.doi.org/10.3390/s21217405.
Pełny tekst źródłaLink, Patrick, Johannes Bodenstab, Lars Penter i Steffen Ihlenfeldt. "Metamodeling of a deep drawing process using conditional Generative Adversarial Networks". IOP Conference Series: Materials Science and Engineering 1238, nr 1 (1.05.2022): 012064. http://dx.doi.org/10.1088/1757-899x/1238/1/012064.
Pełny tekst źródłaFalahatraftar, Farnoush, Samuel Pierre i Steven Chamberland. "A Conditional Generative Adversarial Network Based Approach for Network Slicing in Heterogeneous Vehicular Networks". Telecom 2, nr 1 (18.03.2021): 141–54. http://dx.doi.org/10.3390/telecom2010009.
Pełny tekst źródłaAida, Saori, Junpei Okugawa, Serena Fujisaka, Tomonari Kasai, Hiroyuki Kameda i Tomoyasu Sugiyama. "Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks". Biomolecules 10, nr 6 (19.06.2020): 931. http://dx.doi.org/10.3390/biom10060931.
Pełny tekst źródłaChoi, Suyeon, i Yeonjoo Kim. "Rad-cGAN v1.0: Radar-based precipitation nowcasting model with conditional generative adversarial networks for multiple dam domains". Geoscientific Model Development 15, nr 15 (1.08.2022): 5967–85. http://dx.doi.org/10.5194/gmd-15-5967-2022.
Pełny tekst źródłaYuan, Hao, Lei Cai, Zhengyang Wang, Xia Hu, Shaoting Zhang i Shuiwang Ji. "Computational modeling of cellular structures using conditional deep generative networks". Bioinformatics 35, nr 12 (6.11.2018): 2141–49. http://dx.doi.org/10.1093/bioinformatics/bty923.
Pełny tekst źródłaThakur, Amey. "Generative Adversarial Networks". International Journal for Research in Applied Science and Engineering Technology 9, nr 8 (31.08.2021): 2307–25. http://dx.doi.org/10.22214/ijraset.2021.37723.
Pełny tekst źródłaCem Birbiri, Ufuk, Azam Hamidinekoo, Amélie Grall, Paul Malcolm i Reyer Zwiggelaar. "Investigating the Performance of Generative Adversarial Networks for Prostate Tissue Detection and Segmentation". Journal of Imaging 6, nr 9 (24.08.2020): 83. http://dx.doi.org/10.3390/jimaging6090083.
Pełny tekst źródłaGreen, Adrian J., Martin J. Mohlenkamp, Jhuma Das, Meenal Chaudhari, Lisa Truong, Robyn L. Tanguay i David M. Reif. "Leveraging high-throughput screening data, deep neural networks, and conditional generative adversarial networks to advance predictive toxicology". PLOS Computational Biology 17, nr 7 (2.07.2021): e1009135. http://dx.doi.org/10.1371/journal.pcbi.1009135.
Pełny tekst źródłaSoni, Ayush, Alexander Loui, Scott Brown i Carl Salvaggio. "High-quality multispectral image generation using Conditional GANs". Electronic Imaging 2020, nr 8 (26.01.2020): 86–1. http://dx.doi.org/10.2352/issn.2470-1173.2020.8.imawm-086.
Pełny tekst źródłaHuang, Yin-Fu, i Wei-De Liu. "Choreography cGAN: generating dances with music beats using conditional generative adversarial networks". Neural Computing and Applications 33, nr 16 (15.03.2021): 9817–33. http://dx.doi.org/10.1007/s00521-021-05752-x.
Pełny tekst źródłaEom, Gayeong, i Haewon Byeon. "Searching for Optimal Oversampling to Process Imbalanced Data: Generative Adversarial Networks and Synthetic Minority Over-Sampling Technique". Mathematics 11, nr 16 (21.08.2023): 3605. http://dx.doi.org/10.3390/math11163605.
Pełny tekst źródłaLi, Jie, Boyu Zhao, Kai Wu, Zhicheng Dong, Xuerui Zhang i Zhihao Zheng. "A Representation Generation Approach of Transmission Gear Based on Conditional Generative Adversarial Network". Actuators 10, nr 5 (23.04.2021): 86. http://dx.doi.org/10.3390/act10050086.
Pełny tekst źródłaLi, Chen, Yuanbo Li, Zhiqiang Weng, Xuemei Lei i Guangcan Yang. "Face Aging with Feature-Guide Conditional Generative Adversarial Network". Electronics 12, nr 9 (4.05.2023): 2095. http://dx.doi.org/10.3390/electronics12092095.
Pełny tekst źródłaZhang, Pengfei, i Xiaoming Ju. "Adversarial Sample Detection with Gaussian Mixture Conditional Generative Adversarial Networks". Mathematical Problems in Engineering 2021 (13.09.2021): 1–18. http://dx.doi.org/10.1155/2021/8268249.
Pełny tekst źródłaEzeme, Okwudili M., Qusay H. Mahmoud i Akramul Azim. "Design and Development of AD-CGAN: Conditional Generative Adversarial Networks for Anomaly Detection". IEEE Access 8 (2020): 177667–81. http://dx.doi.org/10.1109/access.2020.3025530.
Pełny tekst źródłaKim, Hee-Joung, i Donghoon Lee. "Image denoising with conditional generative adversarial networks (CGAN) in low dose chest images". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 954 (luty 2020): 161914. http://dx.doi.org/10.1016/j.nima.2019.02.041.
Pełny tekst źródłaChrysos, Grigorios G., Jean Kossaifi i Stefanos Zafeiriou. "RoCGAN: Robust Conditional GAN". International Journal of Computer Vision 128, nr 10-11 (14.07.2020): 2665–83. http://dx.doi.org/10.1007/s11263-020-01348-5.
Pełny tekst źródłaMajid, Haneen, i Khawla Ali. "Expanding New Covid-19 Data with Conditional Generative Adversarial Networks". Iraqi Journal for Electrical and Electronic Engineering 18, nr 1 (4.04.2022): 103–10. http://dx.doi.org/10.37917/ijeee.18.1.12.
Pełny tekst źródłaAli, Zeeshan, Sheneela Naz, Hira Zaffar, Jaeun Choi i Yongsung Kim. "An IoMT-Based Melanoma Lesion Segmentation Using Conditional Generative Adversarial Networks". Sensors 23, nr 7 (28.03.2023): 3548. http://dx.doi.org/10.3390/s23073548.
Pełny tekst źródłaZaytar, Mohamed Akram, i Chaker El Amrani. "Satellite image inpainting with deep generative adversarial neural networks". IAES International Journal of Artificial Intelligence (IJ-AI) 10, nr 1 (1.03.2021): 121. http://dx.doi.org/10.11591/ijai.v10.i1.pp121-130.
Pełny tekst źródłaKu, Hyeeun, i Minhyeok Lee. "TextControlGAN: Text-to-Image Synthesis with Controllable Generative Adversarial Networks". Applied Sciences 13, nr 8 (19.04.2023): 5098. http://dx.doi.org/10.3390/app13085098.
Pełny tekst źródłaMa, Fei, Fei Gao, Jinping Sun, Huiyu Zhou i and Amir Hussain. "Weakly Supervised Segmentation of SAR Imagery Using Superpixel and Hierarchically Adversarial CRF". Remote Sensing 11, nr 5 (2.03.2019): 512. http://dx.doi.org/10.3390/rs11050512.
Pełny tekst źródłaRodríguez-Suárez, Brais, Pablo Quesada-Barriuso i Francisco Argüello. "Design of CGAN Models for Multispectral Reconstruction in Remote Sensing". Remote Sensing 14, nr 4 (9.02.2022): 816. http://dx.doi.org/10.3390/rs14040816.
Pełny tekst źródłaRamazyan, T., O. Kiss, M. Grossi, E. Kajomovitz i S. Vallecorsa. "Generating muonic force carriers events with classical and quantum neural networks". Journal of Physics: Conference Series 2438, nr 1 (1.02.2023): 012089. http://dx.doi.org/10.1088/1742-6596/2438/1/012089.
Pełny tekst źródłaJafrasteh, B., I. Manighetti i J. Zerubia. "GENERATIVE ADVERSARIAL NETWORKS AS A NOVEL APPROACH FOR TECTONIC FAULT AND FRACTURE EXTRACTION IN HIGH-RESOLUTION SATELLITE AND AIRBORNE OPTICAL IMAGES". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLIII-B3-2020 (21.08.2020): 1219–27. http://dx.doi.org/10.5194/isprs-archives-xliii-b3-2020-1219-2020.
Pełny tekst źródłaZhang, Zaijun, Hiroaki Ishihata, Ryuto Maruyama, Tomonari Kasai, Hiroyuki Kameda i Tomoyasu Sugiyama. "Deep Learning of Phase-Contrast Images of Cancer Stem Cells Using a Selected Dataset of High Accuracy Value Using Conditional Generative Adversarial Networks". International Journal of Molecular Sciences 24, nr 6 (10.03.2023): 5323. http://dx.doi.org/10.3390/ijms24065323.
Pełny tekst źródłaYadav, Jyoti Deshwal, Vivek K. Dwivedi i Saurabh Chaturvedi. "ResNet-Enabled cGAN Model for Channel Estimation in Massive MIMO System". Wireless Communications and Mobile Computing 2022 (29.08.2022): 1–9. http://dx.doi.org/10.1155/2022/2697932.
Pełny tekst źródłaBittner, K., P. d’Angelo, M. Körner i P. Reinartz. "AUTOMATIC LARGE-SCALE 3D BUILDING SHAPE REFINEMENT USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORKS". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2 (30.05.2018): 103–8. http://dx.doi.org/10.5194/isprs-archives-xlii-2-103-2018.
Pełny tekst źródłaList, Florian, Ishaan Bhat i Geraint F. Lewis. "A black box for dark sector physics: predicting dark matter annihilation feedback with conditional GANs". Monthly Notices of the Royal Astronomical Society 490, nr 3 (3.10.2019): 3134–43. http://dx.doi.org/10.1093/mnras/stz2759.
Pełny tekst źródłaYoshiura, Shintaro, Hayato Shimabukuro, Kenji Hasegawa i Keitaro Takahashi. "Predicting 21 cm-line map from Lyman-α emitter distribution with generative adversarial networks". Monthly Notices of the Royal Astronomical Society 506, nr 1 (18.06.2021): 357–71. http://dx.doi.org/10.1093/mnras/stab1718.
Pełny tekst źródłaShao, Changcheng, Xiaolin Li, Fang Li i Yifan Zhou. "Large Mask Image Completion with Conditional GAN". Symmetry 14, nr 10 (14.10.2022): 2148. http://dx.doi.org/10.3390/sym14102148.
Pełny tekst źródłaRastin, Zahra, Gholamreza Ghodrati Amiri i Ehsan Darvishan. "Generative Adversarial Network for Damage Identification in Civil Structures". Shock and Vibration 2021 (3.09.2021): 1–12. http://dx.doi.org/10.1155/2021/3987835.
Pełny tekst źródłaWeng, Yongchun, Yong Ma, Fu Chen, Erping Shang, Wutao Yao, Shuyan Zhang, Jin Yang i Jianbo Liu. "Temporal Co-Attention Guided Conditional Generative Adversarial Network for Optical Image Synthesis". Remote Sensing 15, nr 7 (31.03.2023): 1863. http://dx.doi.org/10.3390/rs15071863.
Pełny tekst źródłaSharafudeen, Misaj, Andrew J. i Vinod Chandra S. S. "Leveraging Vision Attention Transformers for Detection of Artificially Synthesized Dermoscopic Lesion Deepfakes Using Derm-CGAN". Diagnostics 13, nr 5 (21.02.2023): 825. http://dx.doi.org/10.3390/diagnostics13050825.
Pełny tekst źródłaLi, Bing, Yong Xian, Juan Su, Da Q. Zhang i Wei L. Guo. "I-GANs for Infrared Image Generation". Complexity 2021 (23.03.2021): 1–11. http://dx.doi.org/10.1155/2021/6635242.
Pełny tekst źródłaYuan, X., J. Tian i P. Reinartz. "GENERATING ARTIFICIAL NEAR INFRARED SPECTRAL BAND FROM RGB IMAGE USING CONDITIONAL GENERATIVE ADVERSARIAL NETWORK". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-3-2020 (3.08.2020): 279–85. http://dx.doi.org/10.5194/isprs-annals-v-3-2020-279-2020.
Pełny tekst źródłaRojas-Campos, Adrian, Michael Langguth, Martin Wittenbrink i Gordon Pipa. "Deep learning models for generation of precipitation maps based on numerical weather prediction". Geoscientific Model Development 16, nr 5 (8.03.2023): 1467–80. http://dx.doi.org/10.5194/gmd-16-1467-2023.
Pełny tekst źródłaLee, JooHwa, i KeeHyun Park. "AE-CGAN Model based High Performance Network Intrusion Detection System". Applied Sciences 9, nr 20 (10.10.2019): 4221. http://dx.doi.org/10.3390/app9204221.
Pełny tekst źródłaHong, Zhiwei, Xiaocheng Fan, Tao Jiang i Jianxing Feng. "End-to-End Unpaired Image Denoising with Conditional Adversarial Networks". Proceedings of the AAAI Conference on Artificial Intelligence 34, nr 04 (3.04.2020): 4140–49. http://dx.doi.org/10.1609/aaai.v34i04.5834.
Pełny tekst źródłaAl-Shargabi, Amal A., Jowharah F. Alshobaili, Abdulatif Alabdulatif i Naseem Alrobah. "COVID-CGAN: Efficient Deep Learning Approach for COVID-19 Detection Based on CXR Images Using Conditional GANs". Applied Sciences 11, nr 16 (4.08.2021): 7174. http://dx.doi.org/10.3390/app11167174.
Pełny tekst źródłaLuo, Qingli, Hong Li, Zhiyuan Chen i Jian Li. "ADD-UNet: An Adjacent Dual-Decoder UNet for SAR-to-Optical Translation". Remote Sensing 15, nr 12 (15.06.2023): 3125. http://dx.doi.org/10.3390/rs15123125.
Pełny tekst źródłaRizkinia, Mia, Nathaniel Faustine i Masahiro Okuda. "Conditional Generative Adversarial Networks with Total Variation and Color Correction for Generating Indonesian Face Photo from Sketch". Applied Sciences 12, nr 19 (5.10.2022): 10006. http://dx.doi.org/10.3390/app121910006.
Pełny tekst źródłaRamdani, Ahmad, Andika Perbawa, Ingrid Puspita i Volker Vahrenkamp. "Acoustic impedance to outcrop: Presenting near-surface seismic data as a virtual outcrop in carbonate analog studies". Leading Edge 41, nr 9 (wrzesień 2022): 599–610. http://dx.doi.org/10.1190/tle41090599.1.
Pełny tekst źródła