Gotowa bibliografia na temat „CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)"
Zhou, Guoqiang, Yi Fan, Jiachen Shi, Yuyuan Lu i Jun Shen. "Conditional Generative Adversarial Networks for Domain Transfer: A Survey". Applied Sciences 12, nr 16 (21.08.2022): 8350. http://dx.doi.org/10.3390/app12168350.
Pełny tekst źródłaLee, Minhyeok, i Junhee Seok. "Estimation with Uncertainty via Conditional Generative Adversarial Networks". Sensors 21, nr 18 (15.09.2021): 6194. http://dx.doi.org/10.3390/s21186194.
Pełny tekst źródłaZhang, Hao, i Wenlei Wang. "Imaging Domain Seismic Denoising Based on Conditional Generative Adversarial Networks (CGANs)". Energies 15, nr 18 (8.09.2022): 6569. http://dx.doi.org/10.3390/en15186569.
Pełny tekst źródłaZand, Jaleh, i Stephen Roberts. "Mixture Density Conditional Generative Adversarial Network Models (MD-CGAN)". Signals 2, nr 3 (1.09.2021): 559–69. http://dx.doi.org/10.3390/signals2030034.
Pełny tekst źródłaZhen, Hao, Yucheng Shi, Jidong J. Yang i Javad Mohammadpour Vehni. "Co-supervised learning paradigm with conditional generative adversarial networks for sample-efficient classification". Applied Computing and Intelligence 3, nr 1 (2022): 13–26. http://dx.doi.org/10.3934/aci.2023002.
Pełny tekst źródłaHuang, Yubo, i Zhong Xiang. "A Metal Character Enhancement Method based on Conditional Generative Adversarial Networks". Journal of Physics: Conference Series 2284, nr 1 (1.06.2022): 012003. http://dx.doi.org/10.1088/1742-6596/2284/1/012003.
Pełny tekst źródłaKyslytsyna, Anastasiia, Kewen Xia, Artem Kislitsyn, Isselmou Abd El Kader i Youxi Wu. "Road Surface Crack Detection Method Based on Conditional Generative Adversarial Networks". Sensors 21, nr 21 (8.11.2021): 7405. http://dx.doi.org/10.3390/s21217405.
Pełny tekst źródłaLink, Patrick, Johannes Bodenstab, Lars Penter i Steffen Ihlenfeldt. "Metamodeling of a deep drawing process using conditional Generative Adversarial Networks". IOP Conference Series: Materials Science and Engineering 1238, nr 1 (1.05.2022): 012064. http://dx.doi.org/10.1088/1757-899x/1238/1/012064.
Pełny tekst źródłaFalahatraftar, Farnoush, Samuel Pierre i Steven Chamberland. "A Conditional Generative Adversarial Network Based Approach for Network Slicing in Heterogeneous Vehicular Networks". Telecom 2, nr 1 (18.03.2021): 141–54. http://dx.doi.org/10.3390/telecom2010009.
Pełny tekst źródłaAida, Saori, Junpei Okugawa, Serena Fujisaka, Tomonari Kasai, Hiroyuki Kameda i Tomoyasu Sugiyama. "Deep Learning of Cancer Stem Cell Morphology Using Conditional Generative Adversarial Networks". Biomolecules 10, nr 6 (19.06.2020): 931. http://dx.doi.org/10.3390/biom10060931.
Pełny tekst źródłaRozprawy doktorskie na temat "CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)"
Oskarsson, Joel. "Probabilistic Regression using Conditional Generative Adversarial Networks". Thesis, Linköpings universitet, Statistik och maskininlärning, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166637.
Pełny tekst źródłaAlbertazzi, Riccardo. "A study on the application of generative adversarial networks to industrial OCR". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)"
Kumar, Jatin, Indra Deep Mastan i Shanmuganathan Raman. "FMD-cGAN: Fast Motion Deblurring Using Conditional Generative Adversarial Networks". W Communications in Computer and Information Science, 362–77. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-11349-9_32.
Pełny tekst źródłaStreszczenia konferencji na temat "CONDITIONAL GENERATIVE ADVERARIAL NETWORKS (CGAN)"
Pang, Yutian, i Yongming Liu. "Conditional Generative Adversarial Networks (CGAN) for Aircraft Trajectory Prediction considering weather effects". W AIAA Scitech 2020 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2020. http://dx.doi.org/10.2514/6.2020-1853.
Pełny tekst źródłaYang, Lu. "Conditional Generative Adversarial Networks (CGAN) for Abnormal Vibration of Aero Engine Analysis". W 2020 IEEE 2nd International Conference on Civil Aviation Safety and Information Technology (ICCASIT). IEEE, 2020. http://dx.doi.org/10.1109/iccasit50869.2020.9368622.
Pełny tekst źródłaQi, Y., L. Su, J. Gu i K. Li. "CE-CGAN: classification enhanced conditional generative adversarial networks for bearing fault diagnosis". W 12th International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE 2022). Institution of Engineering and Technology, 2022. http://dx.doi.org/10.1049/icp.2022.3125.
Pełny tekst źródłaSalimzadeh, S., D. Kasperczyk i T. Kadeethum. "Predicting Ground Surface Deformation Induced by Pressurized Fractures Using Conditional Generative Adversarial Networks". W 57th U.S. Rock Mechanics/Geomechanics Symposium. ARMA, 2023. http://dx.doi.org/10.56952/arma-2023-0218.
Pełny tekst źródłaNie, Zhenguo, Tong Lin, Haoliang Jiang i Levent Burak Kara. "TopologyGAN: Topology Optimization Using Generative Adversarial Networks Based on Physical Fields Over the Initial Domain". W ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22675.
Pełny tekst źródłaToutouh, J., S. Nesmachnow i D. G. Rossit. "Generative adversarial networks to model air pollution under uncertainty". W 1st International Workshop on Advanced Information and Computation Technologies and Systems 2020. Crossref, 2021. http://dx.doi.org/10.47350/aicts.2020.20.
Pełny tekst źródłaChen, Hongrui, i Xingchen Liu. "Geometry Enhanced Generative Adversarial Networks for Random Heterogeneous Material Representation". W ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/detc2021-71918.
Pełny tekst źródłaJiang, Haoliang, Zhenguo Nie, Roselyn Yeo, Amir Barati Farimani i Levent Burak Kara. "StressGAN: A Generative Deep Learning Model for 2D Stress Distribution Prediction". W ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22682.
Pełny tekst źródłaZiviani, Hugo Eduardo, Guillermo Cámara Chávez i Mateus Coelho Silva. "Applying a Conditional GAN for Bone Suppression in Chest Radiography Images". W Seminário Integrado de Software e Hardware. Sociedade Brasileira de Computação - SBC, 2022. http://dx.doi.org/10.5753/semish.2022.222540.
Pełny tekst źródłaSun, Xiaopeng, Muxingzi Li, Tianyu He i Lubin Fan. "Enhance Image as You Like with Unpaired Learning". W Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/140.
Pełny tekst źródła