Gotowa bibliografia na temat „Concrete Structures-Shear and Torsion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Concrete Structures-Shear and Torsion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Concrete Structures-Shear and Torsion"
Constantinos Β. Demakos, Constantinos C. Repapis, Dimitrios P. Drivas i Panagiotis Kaoukis. "Experimental investigation of FRP strengthened reinforced concrete T-beams in torsion". Global Journal of Engineering and Technology Advances 16, nr 1 (30.07.2023): 050–57. http://dx.doi.org/10.30574/gjeta.2023.16.1.0130.
Pełny tekst źródłaKagermanov, Alexander, i Paola Ceresa. "3D Fiber-Based Frame Element with Multiaxial Stress Interaction for RC Structures". Advances in Civil Engineering 2018 (15.08.2018): 1–13. http://dx.doi.org/10.1155/2018/8596970.
Pełny tekst źródłaHu, Shao Wei, i Ke Yu Zhao. "Experimental Research on Torsional Performance of Prestressed Composite Box Beam with Partial Shear Connection". Applied Mechanics and Materials 438-439 (październik 2013): 658–62. http://dx.doi.org/10.4028/www.scientific.net/amm.438-439.658.
Pełny tekst źródłaLyublinskiy, Valery, i Vladislav Struchkov. "Torsion RC structures of asymmetric multistory buildings". E3S Web of Conferences 410 (2023): 02017. http://dx.doi.org/10.1051/e3sconf/202341002017.
Pełny tekst źródłaRaiyani, S. D., D. D. Joshi, P. V. Patel i S. R. Ramani. "Numerical study on Role of Shear Key in Precast Beam to Beam Connection Subjected to Torsion". Proceedings of the 12th Structural Engineering Convention, SEC 2022: Themes 1-2 1, nr 1 (19.12.2022): 57–61. http://dx.doi.org/10.38208/acp.v1.473.
Pełny tekst źródłaJu, Hyunjin, i Alina Serik. "Torsional Strength of Recycled Coarse Aggregate Reinforced Concrete Beams". CivilEng 4, nr 1 (16.01.2023): 55–64. http://dx.doi.org/10.3390/civileng4010004.
Pełny tekst źródłaYu, Zhigang, i Deshan Shan. "Experimental and numerical studies of T-shaped reinforced concrete members subjected to combined compression-bending-shear-torsion". Advances in Structural Engineering 24, nr 12 (17.05.2021): 2809–25. http://dx.doi.org/10.1177/13694332211012577.
Pełny tekst źródłaBayrak, Barış. "The Behavior of Hybrid Fiber RC Shear Walls Subjected to Monolithic Pure Torsion: An Analytical Study". Civil Engineering Beyond Limits 3, nr 3 (16.11.2022): 1–7. http://dx.doi.org/10.36937/cebel.2022.1745.
Pełny tekst źródłaMen, Jin Jie, Qing Xuan Shi i Qiu Wei Wang. "Unity Equation of Torsional Capacity for RC Members Subjected to Axial Compression, Bend, Shear and Torque". Advanced Materials Research 163-167 (grudzień 2010): 874–79. http://dx.doi.org/10.4028/www.scientific.net/amr.163-167.874.
Pełny tekst źródłaMavaddat, Shahbaz, i M. Saeed Mirza. "Computer analysis of thin-walled concrete box beams". Canadian Journal of Civil Engineering 16, nr 6 (1.12.1989): 902–9. http://dx.doi.org/10.1139/l89-133.
Pełny tekst źródłaRozprawy doktorskie na temat "Concrete Structures-Shear and Torsion"
Puurula, Arto. "Assessment of prestressed concrete bridges loaded in combined shear, torsion and bending /". Luleå, 2004. http://epubl.luth.se/1402-1757/2004/43.
Pełny tekst źródłaAlnuaimi, Ali Said Mohammed. "Direct design of reinforced and partially prestressed concrete beams for combined torsion, bending and shear". Thesis, Connect to e-thesis, 1999. http://theses.gla.ac.uk/652/.
Pełny tekst źródłaShaarbaf, Ihsan Ali Saib. "Three-dimensional non-linear finite element analysis of reinforced concrete beams in torsion : reinforced concrete members under torsion and bending are analysed up to failure : a non-linear concrete model for general states of stress including compressive strength degradation due to cracking is described". Thesis, University of Bradford, 1990. http://hdl.handle.net/10454/3576.
Pełny tekst źródłaPham, Keimann, i Jesse Olsson. "Bestämning av skjuvhållfasthet med vridprovning för pågjutna betongkonstruktioner". Thesis, KTH, Byggteknik och design, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-136826.
Pełny tekst źródłaDamages and wear on concrete bridges are due to de-icing salt or salt water, reinforcement corrosion and repeated freeze-thaw cycles in combination with increasing traffic loads. The most common repair operation for these types of damages is to remove the deteriorated concrete and replace it with a new concrete overlay. To evaluate how well a bonded concrete overlay is, the bond strength between the new and old concrete has to be determined. The most widely used method for this purpose is the so-called pull off test to determine the tensile bond strength. In practice however the shear bond strength is of greater interest and is therefore approximated on the basis of tensile bond strength, but with a torsion test the shear bond strength can be directly determined. The purpose of this study is to investigate the reliability of the torsion test to determine the shear bond strength in a more direct and accurate manner. The thesis examines the reliability of the torsion test to determine the shear bond strength with the pull off test as a reference. The study includes eight parallel tests of pull off and torsion tests where the lowest measured shear bond strength is compared with the calculated design value of shear bond strength according to EC2. The work is done in connection with the Spårväg city project at Sergels torg, Stockholm, in collaboration with the Traffic Administration Office in Stockholm and CBI, the Swedish Cement and Concrete Research Institute. The results of the tests showed that the failures in the interface between new and old concrete, which are of interest, were more common for pull off tests than torsion tests where only two of the eight test samples showed failure in the interface. The wide scatter of the measured values is a consequence of the low number of failures in the interface. The mean value of the tensile bond strength was 1,43 MPa, which indicates good bond strength. The shear bond strength however made with torsion tests show a mean value of only 1,61 MPa. Lower than the expected value of about twice the tensile bond strength of 2,86 MPa. Interestingly, the lowest measured value of the shear bond strength of 0,83 MPa was unusually low, but still higher than the calculated design value of shear bond strength of 0.59 MPa according to EC2. The study has shown that torsion test is a difficult method for determining the shear strength of the bond between the new and old concrete. The reason for this is mainly due to three factors, the low number of tests, the large scatter of values, and the difficulty to interpret failures of the test samples. Despite this the torsion test seems to be a future method for structural engineers and contractors as a tool to determine shear strength for repaired concrete structures in general and not only the shear bond strength.
Bairán, García Jesús Miguel. "A non-linear coupled model for the analysis of reinforced concrete sections under bending, shear, torsion and axial forces". Doctoral thesis, Universitat Politècnica de Catalunya, 2005. http://hdl.handle.net/10803/6177.
Pełny tekst źródłaEl objetivo principal de esta tesis es generalizar el análisis de secciones de hormigón armado mediante fibras, de forma que se pueda reproducir la res-puesta no-lineal acoplada frente a esfuerzos normales y tangenciales bajo solicitaciones tridimensionales generales. De igual forma, se pretende obtener, para los esfuerzos cortantes y torsión, la misma capacidad de representación de geometrías y combinación de materiales que ofrecen los modelos de fibras para esfuerzos de flexo-compresión.
La primera problemática estriba en representar adecuadamente la cinemática de la sección transversal. Con la excepción de las deformaciones normales contenidas en el plano de la sección, no existe una teoría cinemática que a priori pueda dar la distribución del resto de deformaciones o tensiones en la sección, sin dejar de satisfacer las condiciones de equilibrio interno o continuidad entre las fibras que componen la misma.
Por otra parte, para materiales anisótropos, como el hormigón fisurado, en general todos los esfuerzos internos pueden estar acoplados. Además, es preciso considerar la distorsión de la sección transversal para satisfacer el equilibrio entre fibras.
El problema se aborda de forma general, considerando una sección de forma y materiales cualesquiera. Se parte del problema diferencial de equilibrio de un sólido con el que se ha podido deducir un sistema de equilibrio entre fibras (equilibrio a nivel sección). Se puede demostrar que éste es complementario al problema estándar de vigas. El sistema complementario permite recuperar información tridimensional que normalmente se pierde al resolver un problema de vigas.
Posteriormente, se propone una solución interna del problema complementario, en la que el alabeo y la distorsión de la sección quedan expresados como una función de las deformaciones generalizadas de una viga: deformaciones axil y cortantes, curvaturas de flexión y torsión. No son necesarios grados de libertad adicionales a nivel estructura ni hipótesis a-priori sobre la forma de los campos de deformación o tensión interna.
A partir de la formulación teórica, se desarrolla un modelo de elementos finitos plano de la sección transversal. El modelo está preparado para servir como respuesta constitutiva de cualquier tipo de elemento viga en sus puntos de integración. %Se evita así la necesidad de realizar un modelo de elementos sólidos de toda la barra para estudiar la respuesta frente a una combinación general de esfuerzos normales y tangenciales.
Se implementan una serie de modelos constitutivos para distintos materiales. En particular, se implementa un modelo constitutivo triaxial para hormigón fisurado, considerando la anisotropía inducida por la fisuración e incluyendo la superficie de rotura según un criterio multiaxial.
La formulación seccional es validada mediante varios casos de estudio teóricos y experimentales. La respuesta no-lineal acoplada bajo diversas combinaciones de esfuerzos normales y tangenciales es reproducida con precisión, lo cual queda patente tanto en las curvas esfuerzo-deformación obtenidas como en las matrices de rigidez seccionales.
Finalmente, se recopilan las conclusiones derivadas de la presente investigación y se
ofren recomendaciones para futuros trabajos.
Most RC structures are subjected to combined normal and tangential forces, such as bending, axial load, shear and torsion. Concrete cracking, steel yielding and other material nonlinearities produce an anisotropic sectional response that results in a coupling between the effects of normal and shear forces, i.e. normal force or bending moments may produce shear strains and vice versa. Although this interaction is sometimes taken into account, in a simplified manner, in the design of RC structures, a deep analysis of the coupling effects of RC sections using fiber models has not yet been made for arbitrary shape sections under general 3D loading.
The main objective of this thesis is to generalize the fiber-like sectional analysis of reinforced concrete elements, to make it capable of considering the coupled non-linear response under tangential and normal internal forces, from a general 3D loading.
Similarly, it is desired to obtain, for torque and shear forces, the same capacity and versatility in reproducing complex geometry and materials combination that fiber-like sectional representations offers for bending and stretching.
The first problematic lies in finding a proper representation of the section's kinematics under such general loading. Except for in-plane normal strains, there is no single kinematical theory capable of a-priori representing the correct distribution of the others strains or stresses satisfying, at the same time, inter-fiber equilibrium and continuity. On the other hand, for rather anisotropic materials, such as cracked concrete, all internal forces are, in general, coupled. It is also required that distortion is allowed for the section's kinematics in order to guarantee satisfaction of internal equilibrium.
The problem is dealt in a general form considering arbitrary shaped sections and any material behaviour. Starting from the differential equilibrium of a solid, an inter-fiber equilibrium system (equilibrium at the sectional level) was deduced. This system, which is complementary to the standard equilibrium problem of a beam-column, allows to recuperate information of the three-dimensional problem that is generally lost when solving a beam problem.
Further, a solution of the equilibrium at the sectional level is proposed in which the section's warping and distortion are posed as a function of the generalized beam-column strains (axial and shear strains, bending and torsion curvatures). No additional degrees of freedom are required at the structural level nor a-priori hypotheses on the distribution of the internal strains or stresses.
After the theoretical formulation, a planar finite element model for cross-sectional analysis is developed. The model can be used as a constitutive law for general beam column elements at their integration points.
A series of constitutive models have been implemented for several materials. In particular, a triaxial constitutive model for cracked concrete is implemented considering crackinduced anisotropy and a multiaxial failure criterion.
The sectional formulation is validated by means of various theoretical and experimental case studies. Non-linear coupled response under normal and tangential internal forces is reproduced with accuracy, as can be seen both in the predicted internal force-strain curves and in the sectional stiffness matrixes.
Finally, the conclusions drawn from the current research are summarized and
recomendations for future works are given.
Grosser, Philipp R. [Verfasser], i Rolf [Akademischer Betreuer] Eligehausen. "Load-bearing behavior and design of anchorages subjected to shear and torsion loading in uncracked concrete / Philipp R. Grosser. Betreuer: Rolf Eligehausen". Stuttgart : Universitätsbibliothek der Universität Stuttgart, 2012. http://d-nb.info/1028801254/34.
Pełny tekst źródłaCapdevielle, Sophie. "Introduction du gauchissement dans les éléments finis multifibres pour la modélisation non linéaire des structures en béton armé". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAI109/document.
Pełny tekst źródłaThe present work is dedicated to the numerical modeling of structures using multifiber beam elements. This numerical method was proved to be efficient to simulate the behavior of slender structural elements subject to normal stresses. However, the response of the model for shear-dominating stresses lacks of accuracy. This problem is addressed by introducing warping in the kinematics of multibfiber beam elements. A new multifiber element is developed in two steps. Torsional warping is first introduced in the deformations of an arbitrary-shaped composite cross section. The resulting warping profiles are validated by comparison with the axial displacements obtained by three-dimensional modeling of beams in torsion. After implementation of the warping kinematics in a Timoshenko multifiber beam element, the formulation is validated against the experimental behavior of beams subject to pure torsion. The material is modeled by a 3D damage law, and warping is updated throughout the computations to account for damage evolution. A comparison of torque–twist curves predicted with enhanced and classical beam elements to experimental curves highlights the importance of including warping in the model. The second step consists in formulating an element with additional warping degrees of freedom, accounting for the warping deformations due to both transverse shear and torsion. This element is validated using an analytical model for a beam subject to transverse shear. Then the linear elastic behavior of a beam subject to both shear and torsion is successfully compared to the results of a 3D simulation. The complete formulation is coupled to damage through an implicit soulution procedure for the beam and the warping degrees of freedom. The enhanced method is eventually used to compute the behavior of a full structure subject to a seismic loading
Nádvorník, Ondřej. "Návrh mostní konstrukce na rychlostní komunikaci". Master's thesis, Vysoké učení technické v Brně. Fakulta stavební, 2013. http://www.nusl.cz/ntk/nusl-226420.
Pełny tekst źródłaEl-, Shihy A. M. "Unwelded shear connectors in composite steel and concrete structures". Thesis, University of Southampton, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374861.
Pełny tekst źródłaIshtewi, Ahmad M. "Shear Capacity of Fiber-Reinforced Concrete Under Pure Shear". University of Dayton / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1354725447.
Pełny tekst źródłaKsiążki na temat "Concrete Structures-Shear and Torsion"
Farrar, C. R. Static and simulated seismic testing of the TRG-7 through -16 shear wall structures. Washington, D.C: Division of Engineering, Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, 1991.
Znajdź pełny tekst źródłaYamamoto, Taira. Nonlinear finite element analysis of transverse shear and torsional problems in reinforced concrete shells. Ottawa: National Library of Canada, 1999.
Znajdź pełny tekst źródłaDunstan, Tueson A. *. Shear and torsion interaction in reinforced concrete beams. 1989.
Znajdź pełny tekst źródłaRahal, Khaldoun Najib. The behaviour of reinforced concrete beams subjected to combined shear and torsion. 1993.
Znajdź pełny tekst źródłaAdebar, Perry Erwin. Shear design of concrete offshore structures. 1990.
Znajdź pełny tekst źródła364.2T-08: Increasing Shear Capacity Within Existing Reinforced Concrete Structures. American Concrete Institute, 2008. http://dx.doi.org/10.14359/56511.
Pełny tekst źródłaJohnson, R. P., i R. J. Buckby. Composite Structures of Steel and Concrete: Bridges. Blackwell Science Ltd, 1987.
Znajdź pełny tekst źródłaPunching shear resistance of lightweight concrete offshore structures for the Arctic: Literature review. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Znajdź pełny tekst źródłaPunching shear resistance of lightweight concrete offshore structures for the Arctic: 1/25-scale model study. Gaithersburg, MD: U.S. Dept. of Commerce, National Bureau of Standards, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Concrete Structures-Shear and Torsion"
Dolan, Charles W., i H. R. Hamilton. "Shear and Torsion". W Prestressed Concrete, 169–218. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97882-6_7.
Pełny tekst źródłaMosley, W. H., J. H. Bungey i R. Hulse. "Shear, bond and torsion". W Reinforced Concrete Design, 92–103. London: Macmillan Education UK, 1999. http://dx.doi.org/10.1007/978-1-349-14911-7_5.
Pełny tekst źródłaMosley, W. H., i J. H. Bungey. "Shear, Bond and Torsion". W Reinforced Concrete Design, 98–111. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-20929-3_5.
Pełny tekst źródłaMosley, W. H., i J. H. Bungey. "Shear, Bond and Torsion". W Reinforced Concrete Design, 98–111. London: Macmillan Education UK, 1987. http://dx.doi.org/10.1007/978-1-349-18825-3_5.
Pełny tekst źródłaMosley, W. H., i J. H. Bungey. "Shear, Bond and Torsion". W Reinforced Concrete Design, 98–111. London: Macmillan Education UK, 1990. http://dx.doi.org/10.1007/978-1-349-13058-0_5.
Pełny tekst źródłaKong, F. K., i R. H. Evans. "Shear, bond and torsion". W Reinforced and Prestressed Concrete, 198–247. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-7134-0_6.
Pełny tekst źródłaGu, Xianglin, Xianyu Jin i Yong Zhou. "Torsion". W Basic Principles of Concrete Structures, 335–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48565-1_8.
Pełny tekst źródłaMosley, W. H., R. Hulse i J. H. Bungey. "Shear, Bond and Torsion". W Reinforced Concrete Design to Eurocode 2 (EC2), 113–38. London: Macmillan Education UK, 1996. http://dx.doi.org/10.1007/978-1-349-13413-7_5.
Pełny tekst źródłaAngotti, Franco, Matteo Guiglia, Piero Marro i Maurizio Orlando. "Shear and Torsion at Ultimate Limit State". W Reinforced Concrete with Worked Examples, 425–68. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-92839-1_8.
Pełny tekst źródłaKagermanov, Alexander, i Paola Ceresa. "RC Fiber-Based Beam-Column Element with Flexure-Shear-Torsion Interaction". W High Tech Concrete: Where Technology and Engineering Meet, 1006–14. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59471-2_117.
Pełny tekst źródłaStreszczenia konferencji na temat "Concrete Structures-Shear and Torsion"
"Structural Concrete Beam Shear - Still a Riddle?" W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663302.
Pełny tekst źródła"On Peridynamic Computational Simulation of Concrete Structures". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663298.
Pełny tekst źródła"Punching Shear in Fire-Damaged Reinforced Concrete Slabs". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663303.
Pełny tekst źródła"Reliability Models for Shear in Reinforced Concrete Beams". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663317.
Pełny tekst źródła"Shear Design Considerations for Deep Concrete Bridge Girders". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663309.
Pełny tekst źródła"Shear Strength of Slabs with Double- Headed Shear Studs in Radial and Orthogonal Layouts". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663310.
Pełny tekst źródła"Development of Models for Torsion of Concrete Structures in Northern Europe". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663301.
Pełny tekst źródła"A New Design Method for Shear in Prestressed Concrete Girders". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663314.
Pełny tekst źródła"Effect of Strand Debonding on Prestressed Concrete Girder Shear Performance". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663312.
Pełny tekst źródła"Concrete-The Sustainable 21st Century Greening Infrastructure Material". W SP-265: Thomas T.C. Hsu Symposium: Shear and Torsion in Concrete Structures. American Concrete Institute, 2009. http://dx.doi.org/10.14359/51663313.
Pełny tekst źródłaRaporty organizacyjne na temat "Concrete Structures-Shear and Torsion"
Phan, Long T., i H. S. Lew. Punching shear resistance of lightweight concrete offshore structures for the Arctic:. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nist.ir.88-4007.
Pełny tekst źródłaMcLean, David I., H. S. Lew, Long T. Phan i Mary Sansalone. Punching shear resistance of lightweight concrete offshore structures for the Arctic :. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.86-3388.
Pełny tekst źródłaPhan, Long T., H. S. Lew i David I. McLean. Punching shear resistance of lightweight concrete offshore structures for the Arctic :. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.86-3440.
Pełny tekst źródłaMcLean, David I., H. S. Lew, Long T. Phan i Hae In Kim. Punching shear resistance of lightweight concrete offshore structures for the Arctic :. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.86-3454.
Pełny tekst źródłaMcInerney, Michael, Matthew Brenner, Sean Morefield, Robert Weber i John Carlyle. Acoustic nondestructive testing and measurement of tension for steel reinforcing members. Engineer Research and Development Center (U.S.), październik 2021. http://dx.doi.org/10.21079/11681/42181.
Pełny tekst źródłaREVIEW OF VARIOUS SHEAR CONNECTORS IN COMPOSITE STRUCTURES. The Hong Kong Institute of Steel Construction, grudzień 2021. http://dx.doi.org/10.18057/ijasc.2021.17.4.8.
Pełny tekst źródłaPERFORMANCE EVALUATION OF INNOVATIVE COCONUT PALM STEM SHAPED STUD SHEAR CONNECTOR FOR COMPOSITE STRUCTURES. The Hong Kong Institute of Steel Construction, grudzień 2022. http://dx.doi.org/10.18057/ijasc.2022.18.4.4.
Pełny tekst źródłaSHEAR BEHAVIOR OF NOVEL DEMOUNTABLE BOLTED SHEAR CONNECTOR FOR PREFABRICATED COMPOSITE BEAM. The Hong Kong Institute of Steel Construction, grudzień 2022. http://dx.doi.org/10.18057/ijasc.2022.18.4.2.
Pełny tekst źródłaNUMERICAL STUDY ON SHEAR BEHAVIOUR OF ENHANCED C-CHANNELS IN STEEL-UHPC-STEEL SANDWICH STRUCTURES. The Hong Kong Institute of Steel Construction, wrzesień 2021. http://dx.doi.org/10.18057/ijasc.2021.17.3.4.
Pełny tekst źródła