Artykuły w czasopismach na temat „Computational Reaction Kinetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Computational Reaction Kinetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Christophorov, L. N. "Indirect Evidences of Conformational Regulation in Protein Reactions: How Much Can Be Learnt?" Ukrainian Journal of Physics 57, nr 7 (30.07.2012): 746. http://dx.doi.org/10.15407/ujpe57.7.746.
Pełny tekst źródłaKönig, Matthias. "cy3sabiork: A Cytoscape app for visualizing kinetic data from SABIO-RK". F1000Research 5 (18.07.2016): 1736. http://dx.doi.org/10.12688/f1000research.9211.1.
Pełny tekst źródłaMenshutina, Natalia V., Igor V. Lebedev, Evgeniy A. Lebedev, Ratmir R. Dashkin, Mikhail V. Shishanov i Maxim L. Burdeyniy. "STUDY AND MODELING 4,4'-DIAMINODIPHENYLMETHANE SYNTHESIS". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 64, nr 4 (11.04.2021): 100–103. http://dx.doi.org/10.6060/ivkkt.20216404.6314.
Pełny tekst źródłaRosero Chicaíza, David Camilo, i Bibian A. Hoyos. "Reaction kinetic parameters for a distributed model of transport and reaction in Pd/Rh/CeZrO three-way catalytic converters". DYNA 86, nr 210 (1.07.2019): 216–23. http://dx.doi.org/10.15446/dyna.v86n210.78596.
Pełny tekst źródłaMenshutina, Natalia, Igor Lebedev, Evgeniy Lebedev, Andrey Kolnoochenko, Alexander Troyankin, Ratmir Dashkin, Michael Shishanov, Pavel Flegontov i Maxim Burdeyniy. "Complex Modelling and Design of Catalytic Reactors Using Multiscale Approach—Part 2: Catalytic Reactions Modelling with Cellular Automata Approach". Computation 8, nr 4 (10.10.2020): 87. http://dx.doi.org/10.3390/computation8040087.
Pełny tekst źródłaKe, Wei, Guang-Jin Chen i Daoyi Chen. "Methane–propane hydrate formation and memory effect study with a reaction kinetics model". Progress in Reaction Kinetics and Mechanism 45 (styczeń 2020): 146867832090162. http://dx.doi.org/10.1177/1468678320901622.
Pełny tekst źródłaYen, Shih-Wei, Wei-Hsin Chen, Jo-Shu Chang, Chun-Fong Eng, Salman Raza Naqvi i Pau Loke Show. "Torrefaction Thermogravimetric Analysis and Kinetics of Sorghum Distilled Residue for Sustainable Fuel Production". Sustainability 13, nr 8 (11.04.2021): 4246. http://dx.doi.org/10.3390/su13084246.
Pełny tekst źródłaHuang, Sijia, Kangmin Kim, Grant M. Musgrave, Marcus Sharp, Jasmine Sinha, Jeffrey W. Stansbury, Charles B. Musgrave i Christopher N. Bowman. "Determining Michael acceptor reactivity from kinetic, mechanistic, and computational analysis for the base-catalyzed thiol-Michael reaction". Polymer Chemistry 12, nr 25 (2021): 3619–28. http://dx.doi.org/10.1039/d1py00363a.
Pełny tekst źródłaVarela, J. A., S. A. Vázquez i E. Martínez-Núñez. "An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis". Chemical Science 8, nr 5 (2017): 3843–51. http://dx.doi.org/10.1039/c7sc00549k.
Pełny tekst źródłaGajewska, Magdalena, i Katarzyna Skrzypiec. "Kinetics of nitrogen removal processes in constructed wetlands". E3S Web of Conferences 26 (2018): 00001. http://dx.doi.org/10.1051/e3sconf/20182600001.
Pełny tekst źródłaLording, William J., Alan D. Payne, Tory N. Cayzer, Michael S. Sherburn i Michael N. Paddon-Row. "A Combined Computational–Experimental Study of the Kinetics of Intramolecular Diels–Alder Reactions in a Series of 1,3,8-Nonatrienes". Australian Journal of Chemistry 68, nr 2 (2015): 230. http://dx.doi.org/10.1071/ch14430.
Pełny tekst źródłaPark, Jongmin, Hyo Seok Kim, Won Bo Lee i Myung-June Park. "Trends and Outlook of Computational Chemistry and Microkinetic Modeling for Catalytic Synthesis of Methanol and DME". Catalysts 10, nr 6 (11.06.2020): 655. http://dx.doi.org/10.3390/catal10060655.
Pełny tekst źródłaDias Vicentini, Eduardo, Ana P. de Lima Batista i Antonio G. Sampaio de Oliveira-Filho. "Computational mechanistic investigation of the Fe + CO2 → FeO + CO reaction". Physical Chemistry Chemical Physics 22, nr 29 (2020): 16943–48. http://dx.doi.org/10.1039/d0cp00479k.
Pełny tekst źródłaLi, Han-Jung, Hui-Lung Chen, Jee-Gong Chang, Hsin-Tsung Chen, Shiuan-Yau Wu i Shin-Pon Ju. "Computational Study on Reaction Mechanisms and Kinetics of Diazocarbene Radical Reaction with NO". Journal of Physical Chemistry A 114, nr 18 (13.05.2010): 5894–901. http://dx.doi.org/10.1021/jp1008016.
Pełny tekst źródłaIlyin, Daniil V., William A. Goddard, Julius J. Oppenheim i Tao Cheng. "First-principles–based reaction kinetics from reactive molecular dynamics simulations: Application to hydrogen peroxide decomposition". Proceedings of the National Academy of Sciences 116, nr 37 (21.09.2018): 18202–8. http://dx.doi.org/10.1073/pnas.1701383115.
Pełny tekst źródłaWacławek, Stanisław. "Do We Still Need a Laboratory to Study Advanced Oxidation Processes? A Review of the Modelling of Radical Reactions used for Water Treatment". Ecological Chemistry and Engineering S 28, nr 1 (1.03.2021): 11–28. http://dx.doi.org/10.2478/eces-2021-0002.
Pełny tekst źródłaYu, Chunkan, Felipe Minuzzi i Ulrich Maas. "Numerical Simulation of Turbulent Flames based on a Hybrid RANS/Transported-PDF Method and REDIM Method". Eurasian Chemico-Technological Journal 20, nr 1 (31.03.2018): 23. http://dx.doi.org/10.18321/ectj705.
Pełny tekst źródłaSimka, H., M. Hierlemann, M. Utz i K. F. Jensen. "Computational Chemistry Predictions of Kinetics and Major Reaction Pathways for Germane Gas‐Phase Reactions". Journal of The Electrochemical Society 143, nr 8 (1.08.1996): 2646–54. http://dx.doi.org/10.1149/1.1837063.
Pełny tekst źródłaRaymond, K. W., i Y. Pocker. "Bistability and the ordered bimolecular mechanism". Biochemistry and Cell Biology 69, nr 9 (1.09.1991): 661–64. http://dx.doi.org/10.1139/o91-098.
Pełny tekst źródłaBenjamin, Ilan. "Chemical Reaction Dynamics at Liquid Interfaces: A Computational Approach". Progress in Reaction Kinetics and Mechanism 27, nr 2 (czerwiec 2002): 87–126. http://dx.doi.org/10.3184/007967402103165360.
Pełny tekst źródłaHuang, Xue Zheng, i Hai Ling Chen. "Development of the Simulation Software on the Complex Reaction Kinetics". Advanced Materials Research 634-638 (styczeń 2013): 7–10. http://dx.doi.org/10.4028/www.scientific.net/amr.634-638.7.
Pełny tekst źródłaBerkemeier, Thomas, Matteo Krüger, Aryeh Feinberg, Marcel Müller, Ulrich Pöschl i Ulrich K. Krieger. "Accelerating models for multiphase chemical kinetics through machine learning with polynomial chaos expansion and neural networks". Geoscientific Model Development 16, nr 7 (14.04.2023): 2037–54. http://dx.doi.org/10.5194/gmd-16-2037-2023.
Pełny tekst źródłaNissen, Anna, Zhouyuan Zhu, Anthony Kovscek, Louis Castanier i Margot Gerritsen. "Upscaling Kinetics for Field-Scale In-Situ-Combustion Simulation". SPE Reservoir Evaluation & Engineering 18, nr 02 (23.04.2015): 158–70. http://dx.doi.org/10.2118/174093-pa.
Pełny tekst źródłaCerri, G., V. Michelassi, S. Monacchia i S. Pica. "Kinetic combustion neural modelling integrated into computational fluid dynamics". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217, nr 2 (1.01.2003): 185–92. http://dx.doi.org/10.1243/09576500360611218.
Pełny tekst źródłaYang, Shu, San Kiang, Parham Farzan i Marianthi Ierapetritou. "Optimization of Reaction Selectivity Using CFD-Based Compartmental Modeling and Surrogate-Based Optimization". Processes 7, nr 1 (29.12.2018): 9. http://dx.doi.org/10.3390/pr7010009.
Pełny tekst źródłaXue, Jingwen, Fangfang Ma, Jonas Elm, Jingwen Chen i Hong-Bin Xie. "Atmospheric oxidation mechanism and kinetics of indole initiated by ●OH and ●Cl: a computational study". Atmospheric Chemistry and Physics 22, nr 17 (7.09.2022): 11543–55. http://dx.doi.org/10.5194/acp-22-11543-2022.
Pełny tekst źródłaAkanni, Olatokunbo O., Hisham A. Nasr-El-Din i Deepak Gusain. "A Computational Navier-Stokes Fluid-Dynamics-Simulation Study of Wormhole Propagation in Carbonate-Matrix Acidizing and Analysis of Factors Influencing the Dissolution Process". SPE Journal 22, nr 06 (4.10.2017): 2049–66. http://dx.doi.org/10.2118/187962-pa.
Pełny tekst źródłaMoghazy, Yasmen M., Nagwa MM Hamada, Magda F. Fathalla, Yasser R. Elmarassi, Ezzat A. Hamed i Mohamed A. El-Atawy. "Understanding the reaction mechanism of the regioselective piperidinolysis of aryl 1-(2,4-dinitronaphthyl) ethers in DMSO: Kinetic and DFT studies". Progress in Reaction Kinetics and Mechanism 46 (styczeń 2021): 146867832110274. http://dx.doi.org/10.1177/14686783211027446.
Pełny tekst źródłaPoley, Isabela M., i Leandro S. Oliveira. "CFD Modeling and Simulation of Transesterification Reactions of Vegetable Oils with an Alcohol in Baffled Stirred Tank Reactors". Applied Mechanics and Materials 390 (sierpień 2013): 86–90. http://dx.doi.org/10.4028/www.scientific.net/amm.390.86.
Pełny tekst źródłaXu, Z. F., i M. C. Lin. "Kinetics and mechanism for the CH2O + NO2 reaction: A computational study". International Journal of Chemical Kinetics 35, nr 5 (2003): 184–90. http://dx.doi.org/10.1002/kin.10115.
Pełny tekst źródłaGaidamauskaitė, E., i R. Baronas. "A Comparison of Finite Difference Schemes for Computational Modelling of Biosensors". Nonlinear Analysis: Modelling and Control 12, nr 3 (25.07.2007): 359–69. http://dx.doi.org/10.15388/na.2007.12.3.14697.
Pełny tekst źródłaLakin, Matthew R., Simon Youssef, Luca Cardelli i Andrew Phillips. "Abstractions for DNA circuit design". Journal of The Royal Society Interface 9, nr 68 (20.07.2011): 470–86. http://dx.doi.org/10.1098/rsif.2011.0343.
Pełny tekst źródłaSHIH, ANGELA, CALINA CIOBANU i FU-MING TAO. "THEORETICAL MECHANISMS AND KINETICS FOR THE REACTION OF DIMETHYL SULFIDE AND OZONE IN WATER VAPOR". Journal of Theoretical and Computational Chemistry 04, nr 04 (grudzień 2005): 1101–17. http://dx.doi.org/10.1142/s0219633605001982.
Pełny tekst źródłaAi, Jiali, Chi Zhai i Wei Sun. "Study on the Formation of Complex Chemical Waveforms by Different Computational Methods". Processes 8, nr 4 (27.03.2020): 393. http://dx.doi.org/10.3390/pr8040393.
Pełny tekst źródłaZhang, Yunju, Bing He i Yuxi Sun. "Computational study on the mechanisms and kinetics of the CH2CCl + O2 reaction". Canadian Journal of Chemistry 98, nr 8 (sierpień 2020): 395–402. http://dx.doi.org/10.1139/cjc-2019-0293.
Pełny tekst źródłaBaiano, Carmen, Jacopo Lupi, Nicola Tasinato, Cristina Puzzarini i Vincenzo Barone. "The Role of State-of-the-Art Quantum-Chemical Calculations in Astrochemistry: Formation Route and Spectroscopy of Ethanimine as a Paradigmatic Case". Molecules 25, nr 12 (22.06.2020): 2873. http://dx.doi.org/10.3390/molecules25122873.
Pełny tekst źródłaEikerling, Michael, i Xinwei Zhu. "(Keynote) Deciphering Electrocatalytic Reactions with Theory and Computation: The Case of CO2 Reduction". ECS Meeting Abstracts MA2022-01, nr 49 (7.07.2022): 2076. http://dx.doi.org/10.1149/ma2022-01492076mtgabs.
Pełny tekst źródłaHe, Bo, Wan Sheng Nie, Song Jiang Feng i Guo Qiang Li. "A Modified Implicit Iterative Difference Algorithm for Stiff Chemical Kinetic Equations in Complex Combustion System". Advanced Materials Research 295-297 (lipiec 2011): 2333–40. http://dx.doi.org/10.4028/www.scientific.net/amr.295-297.2333.
Pełny tekst źródłaStack, Andrew G., i Paul R. C. Kent. "Geochemical reaction mechanism discovery from molecular simulation". Environmental Chemistry 12, nr 1 (2015): 20. http://dx.doi.org/10.1071/en14045.
Pełny tekst źródłaMakul, Natt. "Towards Computational CO2 Capture and Storage Models". Global Environmental Engineers 8 (25.12.2021): 55–69. http://dx.doi.org/10.15377/2410-3624.2021.08.5.
Pełny tekst źródłaLee, Chen-Chi, Mei-Ya Lin, Yu-Huan Lu i Hsin-Tsung Chen. "Computational Study of the Kinetics and Mechanisms for the HCO + O3 Reaction". Journal of Physical Chemistry A 118, nr 19 (maj 2014): 3395–401. http://dx.doi.org/10.1021/jp4127013.
Pełny tekst źródłaVijayendran, Ravi A., Frances S. Ligler i Deborah E. Leckband. "A Computational Reaction−Diffusion Model for the Analysis of Transport-Limited Kinetics". Analytical Chemistry 71, nr 23 (grudzień 1999): 5405–12. http://dx.doi.org/10.1021/ac990672b.
Pełny tekst źródłaChen, Hui-Lung, Ruei-Ching Jian i Chiitang Tsai. "Reaction mechanisms and kinetics for diazomethyl radical with NO: A computational study". Chemical Physics Letters 497, nr 4-6 (wrzesień 2010): 153–58. http://dx.doi.org/10.1016/j.cplett.2010.08.004.
Pełny tekst źródłaFrei, Reto, Jonathan P. Blitz, Vladimir M. Gun’ko, Bradley E. Frost i Victor S. Sergeev. "Kinetics and Computational Studies of an Aminosilane Reaction with a Silsesquioxane Silanol". Journal of Physical Chemistry A 113, nr 24 (18.06.2009): 6612–19. http://dx.doi.org/10.1021/jp9002998.
Pełny tekst źródłaZavala-Oseguera, Claudia, Annia Galano i Gabriel Merino. "Computational Study on the Kinetics and Mechanism of the Carbaryl + OH Reaction". Journal of Physical Chemistry A 118, nr 36 (27.08.2014): 7776–81. http://dx.doi.org/10.1021/jp507244s.
Pełny tekst źródłaCimas, Alvaro, José A. Gámez, Otilia Mó, Manuel Yáñez i Jean-Yves Salpin. "Computational study on the kinetics of the reaction between Ca2+ and urea". Chemical Physics Letters 456, nr 4-6 (maj 2008): 156–61. http://dx.doi.org/10.1016/j.cplett.2008.03.042.
Pełny tekst źródłaBerry, R. J., i Paul Marshall. "A computational study of the reaction kinetics of methyl radicals with trifluorohalomethanes". International Journal of Chemical Kinetics 30, nr 3 (1998): 179–84. http://dx.doi.org/10.1002/(sici)1097-4601(1998)30:3<179::aid-kin2>3.0.co;2-p.
Pełny tekst źródłaPlanas, Ferran, Michael J. McLeish i Fahmi Himo. "Computational characterization of enzyme-bound thiamin diphosphate reveals a surprisingly stable tricyclic state: implications for catalysis". Beilstein Journal of Organic Chemistry 15 (16.01.2019): 145–59. http://dx.doi.org/10.3762/bjoc.15.15.
Pełny tekst źródłaJafarzadeh, Siavash, Ziguang Chen i Florin Bobaru. "Computational modeling of pitting corrosion". Corrosion Reviews 37, nr 5 (25.09.2019): 419–39. http://dx.doi.org/10.1515/corrrev-2019-0049.
Pełny tekst źródłaHorenko, Illia, Sönke Lorenz, Christof Schütte i Wilhelm Huisinga. "Adaptive approach for nonlinear sensitivity analysis of reaction kinetics". Journal of Computational Chemistry 26, nr 9 (2005): 941–48. http://dx.doi.org/10.1002/jcc.20234.
Pełny tekst źródła