Gotowa bibliografia na temat „Computational Reaction Kinetics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Computational Reaction Kinetics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Computational Reaction Kinetics"
Christophorov, L. N. "Indirect Evidences of Conformational Regulation in Protein Reactions: How Much Can Be Learnt?" Ukrainian Journal of Physics 57, nr 7 (30.07.2012): 746. http://dx.doi.org/10.15407/ujpe57.7.746.
Pełny tekst źródłaKönig, Matthias. "cy3sabiork: A Cytoscape app for visualizing kinetic data from SABIO-RK". F1000Research 5 (18.07.2016): 1736. http://dx.doi.org/10.12688/f1000research.9211.1.
Pełny tekst źródłaMenshutina, Natalia V., Igor V. Lebedev, Evgeniy A. Lebedev, Ratmir R. Dashkin, Mikhail V. Shishanov i Maxim L. Burdeyniy. "STUDY AND MODELING 4,4'-DIAMINODIPHENYLMETHANE SYNTHESIS". IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA KHIMICHESKAYA TEKHNOLOGIYA 64, nr 4 (11.04.2021): 100–103. http://dx.doi.org/10.6060/ivkkt.20216404.6314.
Pełny tekst źródłaRosero Chicaíza, David Camilo, i Bibian A. Hoyos. "Reaction kinetic parameters for a distributed model of transport and reaction in Pd/Rh/CeZrO three-way catalytic converters". DYNA 86, nr 210 (1.07.2019): 216–23. http://dx.doi.org/10.15446/dyna.v86n210.78596.
Pełny tekst źródłaMenshutina, Natalia, Igor Lebedev, Evgeniy Lebedev, Andrey Kolnoochenko, Alexander Troyankin, Ratmir Dashkin, Michael Shishanov, Pavel Flegontov i Maxim Burdeyniy. "Complex Modelling and Design of Catalytic Reactors Using Multiscale Approach—Part 2: Catalytic Reactions Modelling with Cellular Automata Approach". Computation 8, nr 4 (10.10.2020): 87. http://dx.doi.org/10.3390/computation8040087.
Pełny tekst źródłaKe, Wei, Guang-Jin Chen i Daoyi Chen. "Methane–propane hydrate formation and memory effect study with a reaction kinetics model". Progress in Reaction Kinetics and Mechanism 45 (styczeń 2020): 146867832090162. http://dx.doi.org/10.1177/1468678320901622.
Pełny tekst źródłaYen, Shih-Wei, Wei-Hsin Chen, Jo-Shu Chang, Chun-Fong Eng, Salman Raza Naqvi i Pau Loke Show. "Torrefaction Thermogravimetric Analysis and Kinetics of Sorghum Distilled Residue for Sustainable Fuel Production". Sustainability 13, nr 8 (11.04.2021): 4246. http://dx.doi.org/10.3390/su13084246.
Pełny tekst źródłaHuang, Sijia, Kangmin Kim, Grant M. Musgrave, Marcus Sharp, Jasmine Sinha, Jeffrey W. Stansbury, Charles B. Musgrave i Christopher N. Bowman. "Determining Michael acceptor reactivity from kinetic, mechanistic, and computational analysis for the base-catalyzed thiol-Michael reaction". Polymer Chemistry 12, nr 25 (2021): 3619–28. http://dx.doi.org/10.1039/d1py00363a.
Pełny tekst źródłaVarela, J. A., S. A. Vázquez i E. Martínez-Núñez. "An automated method to find reaction mechanisms and solve the kinetics in organometallic catalysis". Chemical Science 8, nr 5 (2017): 3843–51. http://dx.doi.org/10.1039/c7sc00549k.
Pełny tekst źródłaGajewska, Magdalena, i Katarzyna Skrzypiec. "Kinetics of nitrogen removal processes in constructed wetlands". E3S Web of Conferences 26 (2018): 00001. http://dx.doi.org/10.1051/e3sconf/20182600001.
Pełny tekst źródłaRozprawy doktorskie na temat "Computational Reaction Kinetics"
Calderini, Danilo. "Kinetics and dynamics for chemical reactions in gas phase". Doctoral thesis, Scuola Normale Superiore, 2016. http://hdl.handle.net/11384/85818.
Pełny tekst źródłaRogge, Torben. "Experimental and Computational Studies on Ruthenium- and Manganese-Catalyzed C-H and C-C Activation". Doctoral thesis, Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2019. http://hdl.handle.net/21.11130/00-1735-0000-0005-1298-B.
Pełny tekst źródłaZhang, Jie. "Numerical Simulation of Flow in Ozonation Process". Scholar Commons, 2014. https://scholarcommons.usf.edu/etd/5161.
Pełny tekst źródłaAdhikari, Sudip. "Accelerating the Computation of Chemical Reaction Kinetics for Modeling Turbulent Reacting Flows". University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1510259399348102.
Pełny tekst źródłaCarruthers, Chris. "Kinetics of bimolecular exchange reactions: A computational approach". Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7503.
Pełny tekst źródłaGaidamauskaitė, Evelina. "Computational Modeling of Complex Reactions Kinetics in Biosensors". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111122_102523-68545.
Pełny tekst źródłaBiojutikliai yra analitiniai įtaisai sudaryti iš biologiškai aktyvios bei selektyviai atpažįstančios substratą medžiagos, dažniausiai fermento, ir keitiklio formuojančio makroskopinį fizinį signalą. Naujų įtaisų kūrimui būtini lygiagretūs eksperimentiniai tyrimai. Skaitiniai eksperimentai gali patikimai pakeisti fizinius. Modeliuojant tokius biojutiklius, būtina atsižvelgti į juose vykstančių procesų daugiapakopį pobūdį. Šiame darbe nuodugniai ištirtos tokių reakcijų schemų savybės. Sudaryti originalūs matematiniai modeliai optiniam peroksidaziniam bei amperometriniam lakaziniam daugiapakopiams biojutikliams. Deterministinė modelių sudarymo proceso prigimtis leidžia jį automatizuoti. Remiantis šiuo principu sukurtas bendras įrankis kompiuteriniam daugiapakopių biojutiklių modeliavimui. Siekiant optimizuoti skaitinį sprendimą palygintos dažniausiai naudojamos baigtinių skirtumų skaitinio sprendimo schemos sprendžiant reakcijos - difuzijos lygtis. Pastarasis palyginimas parodė, kad greičiausiai reikiamas sprendinio tikslumas pasiekiamas taikant neišreikštinę bei Hopscotch schemas. Uždaviniams, kuriems sparta svarbesnė už tikslumą, turėtų būti taikoma išreikštinė schema. Taikant naują įrankį atliktas kompiuterinis daugiapakopių biojutiklių modeliavimas. Kompiuterinis lakazinio biojutiklio modeliavimas teoriškai paaiškino eksperimentiškai stebėtą sinergetinę mediatoriaus įtaką biojutiklio atsakui. Peroksidazinio biojutiklio kompiuterinio modeliavimo rezultatai parodė, kad plataus... [toliau žr. visą tekstą]
Remmert, Sarah M. "Reduced dimensionality quantum dynamics of chemical reactions". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:7f96405f-105c-4ca3-9b8a-06f77d84606a.
Pełny tekst źródłaAlecu, Ionut M. "Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase". Thesis, University of North Texas, 2009. https://digital.library.unt.edu/ark:/67531/metadc12071/.
Pełny tekst źródłaAlecu, Ionut M. Marshall Paul. "Kinetic studies and computational modeling of atomic chlorine reactions in the gas phase". [Denton, Tex.] : University of North Texas, 2009. http://digital.library.unt.edu/ark:/67531/metadc12071.
Pełny tekst źródłaLUPI, Jacopo. "Computational strategies for the accurate thermochemistry and kinetics of gas-phase reactions". Doctoral thesis, Scuola Normale Superiore, 2022. https://hdl.handle.net/11384/125743.
Pełny tekst źródłaKsiążki na temat "Computational Reaction Kinetics"
Molecular heterogeneous catalysis: A conceptual and computational approach. Weinheim: Wiley-VCH, 2003.
Znajdź pełny tekst źródłaEuropean School on Computational Chemistry (1999 Perugia, Italy). Reaction and molecular dynamics: Proceedings of the European School on Computational Chemistry, Perugia, Italy, July (1999). Berlin: Springer, 2000.
Znajdź pełny tekst źródłaRadhakrishnan, Krishnan. LSENS: The NASA Lewis kinetics and sensitivity analysis code. [Washington, D.C: National Aeronautics and Space Administration, Scientific and Technical Information Program Office ; aHanover, Md., 2000.
Znajdź pełny tekst źródłaA, Bittker David, i United States. National Aeronautics and Space Administration. Scientific and Technical Information Program., red. LSENS: A general chemical kinetics and sensitivity analysis code for homogeneous gas-phase reactions. [Washington, DC]: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Program, 1994.
Znajdź pełny tekst źródłaCenter, Ames Research, i Eloret Institute, red. Computed potential energy surfaces for chemical reactions: Final technical report for cooperative agreement NCC2-478 for the funding period July 1, 1987 - January 31, 1994. Moffett Field, Calif: The Center, 1994.
Znajdź pełny tekst źródłaEugene, Levin, i United States. National Aeronautics and Space Administration., red. Computed potential energy surfaces for chemical reactions: Periodic research report for the period, January 1, 1993 - August 31, 1993 for cooperative agreement NCC2-478. [Washington, D.C: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration., red. Computed potential energy surfaces for chemical reactions: Semi-annual report for the period Jaunary 1, 1992 - June 30, 1992 ... Sunnyvale, CA: Eloret Institute, 1992.
Znajdź pełny tekst źródłaEugene, Levin, i United States. National Aeronautics and Space Administration., red. Computed potential energy surfaces for chemical reactions: Periodic research report for the period, January 1, 1993 - August 31, 1993 for cooperative agreement NCC2-478. [Washington, D.C: National Aeronautics and Space Administration, 1993.
Znajdź pełny tekst źródłaUnited States. National Aeronautics and Space Administration, red. Computed potential energy surfaces for chemical reactions: Semi-annual report for cooperative agreement NCC2-478 for the period January 1, 1988-June 30, 1988. Sunnyvale, CA: The Institute, 1988.
Znajdź pełny tekst źródłaCenter, Ames Research, i Eloret Institute, red. Computed potential energy surfaces for chemical reactions: Final technical report for cooperative agreement NCC2-478 for the funding period July 1, 1987 - January 31, 1994. Moffett Field, Calif: The Center, 1994.
Znajdź pełny tekst źródłaCzęści książek na temat "Computational Reaction Kinetics"
Winkelmann, Stefanie, i Christof Schütte. "Well-Mixed Stochastic Reaction Kinetics". W Stochastic Dynamics in Computational Biology, 1–36. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-62387-6_1.
Pełny tekst źródłaGoddard, William A. "Extracting Reaction Kinetics for Complex Reaction Systems". W Computational Materials, Chemistry, and Biochemistry: From Bold Initiatives to the Last Mile, 1097–108. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-18778-1_49.
Pełny tekst źródłaKosenkov, Dmytro, Yana Kholod, Leonid Gorb i Jerzy Leszczynski. "Evaluation of Proton Transfer in DNA Constituents: Development and Application of Ab Initio Based Reaction Kinetics". W Challenges and Advances in Computational Chemistry and Physics, 187–211. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3034-4_7.
Pełny tekst źródłaSayikli, Cigdem, i Elife Zerrin Bagci. "Limitations of Using Mass Action Kinetics Method in Modeling Biochemical Systems: Illustration for a Second Order Reaction". W Computational Science and Its Applications - ICCSA 2011, 521–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-21934-4_42.
Pełny tekst źródłaRosi, Marzio, Dimitrios Skouteris, Nadia Balucani, Luca Mancini, Noelia Faginas Lago, Linda Podio, Claudio Codella, Bertrand Lefloch i Cecilia Ceccarelli. "Electronic Structure and Kinetics Calculations for the Si+SH Reaction, a Possible Route of SiS Formation in Star-Forming Regions". W Computational Science and Its Applications – ICCSA 2019, 306–15. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-24302-9_22.
Pełny tekst źródłaKubicki, James D., i Kevin M. Rosso. "Geochemical Kinetics via Computational Chemistry". W Molecular Modeling of Geochemical Reactions, 375–414. Chichester, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118845226.ch11.
Pełny tekst źródłaCoutinho, Nayara D., Valter H. Carvalho-Silva, Heibbe C. B. de Oliveira i Vincenzo Aquilanti. "The $$ {\mathbf{HI}}\,\varvec{ + }\,{\mathbf{OH}}\, \to \,{\mathbf{H}}_{{\mathbf{2}}} {\mathbf{O}}\, + \,{\mathbf{I}} $$ HI + OH → H 2 O + I Reaction by First-Principles Molecular Dynamics: Stereodirectional and anti-Arrhenius Kinetics". W Computational Science and Its Applications – ICCSA 2017, 297–313. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-62404-4_22.
Pełny tekst źródłaCossío, Fernando P. "Calculation of Kinetic Data Using Computational Methods". W Rate Constant Calculation for Thermal Reactions, 33–65. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118166123.ch2.
Pełny tekst źródłaDorning, Jack. "Nuclear Reactor Kinetics: 1934–1999 and Beyond". W Nuclear Computational Science, 375–457. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-3411-3_8.
Pełny tekst źródłaHuidobro, J. A., I. Iglesias, B. F. Alfonso, C. Trobajo i J. R. Garcia. "Modeling Chemical Kinetics in Solid State Reactions". W Computational Mathematics, Numerical Analysis and Applications, 229–33. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-49631-3_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Computational Reaction Kinetics"
Mirzaee Kakhki, Iman, Majid Charmchi i Hongwei Sun. "Computational Investigation of Gallium Nitrite Ammonothermal Crystal Growth". W ASME 2013 Heat Transfer Summer Conference collocated with the ASME 2013 7th International Conference on Energy Sustainability and the ASME 2013 11th International Conference on Fuel Cell Science, Engineering and Technology. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/ht2013-17506.
Pełny tekst źródłaChang, S. L., S. A. Lottes, C. Q. Zhou i M. Petrick. "A Hybrid Technique for Coupling Chemical Kinetics and Hydrodynamics Computations in Multi-Phase Reacting Flow Systems". W ASME 1997 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1997. http://dx.doi.org/10.1115/imece1997-0877.
Pełny tekst źródłaKapoor, Rajat, i Suresh Menon. "Computational Issues for Simulating Finite-Rate Kinetics in LES". W ASME Turbo Expo 2002: Power for Land, Sea, and Air. ASMEDC, 2002. http://dx.doi.org/10.1115/gt2002-30608.
Pełny tekst źródłaRubin, Rachamim, Jacob Karni i Jacob Yeheskel. "Chemical Kinetics Simulation of High Temperature Hydrocarbons Reforming in a Solar Reactor". W ASME 2003 International Solar Energy Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/isec2003-44032.
Pełny tekst źródłaRaji, K., i C. B. Sobhan. "A Computational Model for Predicting the Temperature Distribution Inside a CVD Reactor for Carbon Nanotube Synthesis". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-64256.
Pełny tekst źródłaGkantonas, Savvas, Sandeep Jella, Salvatore Iavarone, Philippe Versailles, Epaminondas Mastorakos i Gilles Bourque. "Estimation of Autoignition Propensity in Aeroderivative Gas Turbine Premixers Using Incompletely Stirred Reactor Network Modelling". W ASME Turbo Expo 2022: Turbomachinery Technical Conference and Exposition. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/gt2022-79904.
Pełny tekst źródłaPark, Ji-Woong, Yuanjiang Pei, Yu Zhang, Anqi Zhang i Sibendu Som. "Optimizing Hydrogen Kinetics for Zero-Carbon Emission Transport Technologies". W International Petroleum Technology Conference. IPTC, 2022. http://dx.doi.org/10.2523/iptc-22395-ms.
Pełny tekst źródłaOpris, Cornelius N., i John H. Johnson. "A 2-D Computational Model Describing the Heat Transfer, Reaction Kinetics and Regeneration Characteristics of a Ceramic Diesel Particulate Trap". W International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1998. http://dx.doi.org/10.4271/980546.
Pełny tekst źródłaGoudy, Sean, S. O. Bade Shrestha i Iskender Sahin. "1-D Computational Model of a PEM Fuel Cell Using Reaction Rate Law Kinetics to Model the Consumption of Hydrogen at the Anode". W ASME 2008 6th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2008. http://dx.doi.org/10.1115/fuelcell2008-65118.
Pełny tekst źródłaN’dri, Narcisse, Wei Shyy, Roger Tran-Son-Tay i H. S. Udaykumar. "A Multi-Scale Model for Cell Adhesion and Deformation". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-2069.
Pełny tekst źródłaRaporty organizacyjne na temat "Computational Reaction Kinetics"
Battaglia, Francine, Foster Agblevor, Michael Klein i Reza Sheikhi. Investigation of Coal-biomass Catalytic Gasification using Experiments, Reaction Kinetics and Computational Fluid Dynamics. Office of Scientific and Technical Information (OSTI), grudzień 2015. http://dx.doi.org/10.2172/1329004.
Pełny tekst źródła