Gotowa bibliografia na temat „COMPUTATIONAL NEUROSCIENCE MODELS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „COMPUTATIONAL NEUROSCIENCE MODELS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "COMPUTATIONAL NEUROSCIENCE MODELS"
Krasovskaya, Sofia, i W. Joseph MacInnes. "Salience Models: A Computational Cognitive Neuroscience Review". Vision 3, nr 4 (25.10.2019): 56. http://dx.doi.org/10.3390/vision3040056.
Pełny tekst źródłaBisht, Raj Kishor. "Design and Development of Mathematical Models for Computational Neuroscience". Mathematical Statistician and Engineering Applications 70, nr 1 (31.01.2021): 612–20. http://dx.doi.org/10.17762/msea.v70i1.2515.
Pełny tekst źródłaMartin, Andrea E. "A Compositional Neural Architecture for Language". Journal of Cognitive Neuroscience 32, nr 8 (sierpień 2020): 1407–27. http://dx.doi.org/10.1162/jocn_a_01552.
Pełny tekst źródłaChirimuuta, M. "Minimal models and canonical neural computations: the distinctness of computational explanation in neuroscience". Synthese 191, nr 2 (27.11.2013): 127–53. http://dx.doi.org/10.1007/s11229-013-0369-y.
Pełny tekst źródłaFellous, Jean-Marc, i Christiane Linster. "Computational Models of Neuromodulation". Neural Computation 10, nr 4 (1.05.1998): 771–805. http://dx.doi.org/10.1162/089976698300017476.
Pełny tekst źródłaMigliore, Michele, Thomas M. Morse, Andrew P. Davison, Luis Marenco, Gordon M. Shepherd i Michael L. Hines. "ModelDB: Making Models Publicly Accessible to Support Computational Neuroscience". Neuroinformatics 1, nr 1 (2003): 135–40. http://dx.doi.org/10.1385/ni:1:1:135.
Pełny tekst źródłaJiang, Weihang. "Applications of machine learning in neuroscience and inspiration of reinforcement learning for computational neuroscience". Applied and Computational Engineering 4, nr 1 (14.06.2023): 473–78. http://dx.doi.org/10.54254/2755-2721/4/2023308.
Pełny tekst źródłaGardner, Justin L., i Elisha P. Merriam. "Population Models, Not Analyses, of Human Neuroscience Measurements". Annual Review of Vision Science 7, nr 1 (15.09.2021): 225–55. http://dx.doi.org/10.1146/annurev-vision-093019-111124.
Pełny tekst źródłaGrindrod, Peter, i Desmond J. Higham. "Evolving graphs: dynamical models, inverse problems and propagation". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, nr 2115 (11.11.2009): 753–70. http://dx.doi.org/10.1098/rspa.2009.0456.
Pełny tekst źródłaGisiger, T. "Computational models of association cortex". Current Opinion in Neurobiology 10, nr 2 (1.04.2000): 250–59. http://dx.doi.org/10.1016/s0959-4388(00)00075-1.
Pełny tekst źródłaRozprawy doktorskie na temat "COMPUTATIONAL NEUROSCIENCE MODELS"
Marsh, Steven Joseph Thomas. "Efficient programming models for neurocomputation". Thesis, University of Cambridge, 2015. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.709268.
Pełny tekst źródłaZhu, Mengchen. "Sparse coding models of neural response in the primary visual cortex". Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53868.
Pełny tekst źródłaFöldiak, Peter. "Models of sensory coding". Thesis, University of Cambridge, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239097.
Pełny tekst źródłaWoldman, Wessel. "Emergent phenomena from dynamic network models : mathematical analysis of EEG from people with IGE". Thesis, University of Exeter, 2016. http://hdl.handle.net/10871/23297.
Pełny tekst źródłaMender, Bedeho M. W. "Models of primate supraretinal visual representations". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:ce1fff8e-db5c-46e4-b5aa-7439465c2a77.
Pełny tekst źródłaShepardson, Dylan. "Algorithms for inverting Hodgkin-Huxley type neuron models". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/31686.
Pełny tekst źródłaCommittee Chair: Tovey, Craig; Committee Member: Butera, Rob; Committee Member: Nemirovski, Arkadi; Committee Member: Prinz, Astrid; Committee Member: Sokol, Joel. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Boatin, William. "Characterization of neuron models". Thesis, Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-04182005-181732/.
Pełny tekst źródłaDr. Robert H. Lee, Committee Member ; Dr. Kurt Wiesenfeld, Committee Member ; Dr Robert J. Butera, Committee Member.
BIDDELL, KEVIN MICHAEL. "CREATION OF A BIOPHYSICAL MODEL OF A STRIATAL DORSAL LATERAL MEDIUM SPINY NEURON INCORPORATING DENDRITIC EXCITATION BY NMDA AND AMPA RECEPTOR MODELS". University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1196211076.
Pełny tekst źródłaVellmer, Sebastian. "Applications of the Fokker-Planck Equation in Computational and Cognitive Neuroscience". Doctoral thesis, Humboldt-Universität zu Berlin, 2020. http://dx.doi.org/10.18452/21597.
Pełny tekst źródłaThis thesis is concerned with the calculation of statistics, in particular the power spectra, of point processes generated by stochastic multidimensional integrate-and-fire (IF) neurons, networks of IF neurons and decision-making models from the corresponding Fokker-Planck equations. In the brain, information is encoded by sequences of action potentials. In studies that focus on spike timing, IF neurons that drastically simplify the spike generation have become the standard model. One-dimensional IF neurons do not suffice to accurately model neural dynamics, however, the extension towards multiple dimensions yields realistic behavior at the price of growing complexity. The first part of this work develops a theory of spike-train power spectra for stochastic, multidimensional IF neurons. From the Fokker-Planck equation, a set of partial differential equations is derived that describes the stationary probability density, the firing rate and the spike-train power spectrum. In the second part of this work, a mean-field theory of large and sparsely connected homogeneous networks of spiking neurons is developed that takes into account the self-consistent temporal correlations of spike trains. Neural input is approximated by colored Gaussian noise generated by a multidimensional Ornstein-Uhlenbeck process of which the coefficients are initially unknown but determined by the self-consistency condition and define the solution of the theory. To explore heterogeneous networks, an iterative scheme is extended to determine the distribution of spectra. In the third part, the Fokker-Planck equation is applied to calculate the statistics of sequences of binary decisions from diffusion-decision models (DDM). For the analytically tractable DDM, the statistics are calculated from the corresponding Fokker-Planck equation. To determine the statistics for nonlinear models, the threshold-integration method is generalized.
Hendrickson, Eric B. "Morphologically simplified conductance based neuron models: principles of construction and use in parameter optimization". Diss., Georgia Institute of Technology, 2010. http://hdl.handle.net/1853/33905.
Pełny tekst źródłaKsiążki na temat "COMPUTATIONAL NEUROSCIENCE MODELS"
Hecht-Nielsen, Robert, i Thomas McKenna, red. Computational Models for Neuroscience. London: Springer London, 2003. http://dx.doi.org/10.1007/978-1-4471-0085-0.
Pełny tekst źródłaL, Schwartz Eric, red. Computational neuroscience. Cambridge, Mass: MIT Press, 1990.
Znajdź pełny tekst źródłaComputational neuroscience. Cambridge, Mass: MIT Press, 1990.
Znajdź pełny tekst źródłaPardalos, P. M. Computational neuroscience. New York: Springer, 2010.
Znajdź pełny tekst źródłaA, Ascoli Georgio, red. Computational neuroanatomy: Principles and methods. Totowa, N.J: Humana Press, 2002.
Znajdź pełny tekst źródłaChakravarthy, V. Srinivasa, i Ahmed A. Moustafa. Computational Neuroscience Models of the Basal Ganglia. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8494-2.
Pełny tekst źródłade, Schutter Erik, red. Computational modeling methods for neuroscientists. Cambridge, Mass: MIT Press, 2010.
Znajdź pełny tekst źródłaFundamentals of computational neuroscience. Wyd. 2. Oxford: Oxford University Press, 2010.
Znajdź pełny tekst źródłaTrappenberg, Thomas P. Fundamentals of computational neuroscience. Wyd. 2. Oxford: Oxford University Press, 2010.
Znajdź pełny tekst źródłaTrappenberg, Thomas P. Fundamentals of computational neuroscience. Wyd. 2. Oxford: Oxford University Press, 2010.
Znajdź pełny tekst źródłaCzęści książek na temat "COMPUTATIONAL NEUROSCIENCE MODELS"
van Gils, Stephan, i Wim van Drongelen. "Epilepsy: Computational Models". W Encyclopedia of Computational Neuroscience, 1121–34. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_504.
Pełny tekst źródłavan Gils, Stephan, i Wim van Drongelen. "Epilepsy: Computational Models". W Encyclopedia of Computational Neuroscience, 1–17. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-7320-6_504-1.
Pełny tekst źródłaSkinner, Frances K., Nancy Kopell i Brian Mulloney. "Mathematical Models of the Crayfish Swimmeret System". W Computational Neuroscience, 839–43. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9800-5_130.
Pełny tekst źródłaLee, D. D., B. Y. Reis, H. S. Seung i D. W. Tank. "Nonlinear Network Models of the Oculomotor Integrator". W Computational Neuroscience, 371–77. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9800-5_60.
Pełny tekst źródłaLansner, Anders, Örjan Ekeberg, Erik Fransén, Per Hammarlund i Tomas Wilhelmsson. "Detailed Simulation of Large Scale Neural Network Models". W Computational Neuroscience, 931–35. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4757-9800-5_144.
Pełny tekst źródłaBednar, James A., i Risto Miikkulainen. "Pattern-Generator-Driven Development in Self-Organizing Models". W Computational Neuroscience, 317–23. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4831-7_53.
Pełny tekst źródłaCheong, Jin Hyun, Eshin Jolly, Sunhae Sul i Luke J. Chang. "Computational Models in Social Neuroscience". W Computational Models of Brain and Behavior, 229–44. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781119159193.ch17.
Pełny tekst źródłaYu, Angela J. "Computational Models of Neuromodulation". W Encyclopedia of Computational Neuroscience, 761–66. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_625.
Pełny tekst źródłaYu, Angela J. "Computational Models of Neuromodulation". W Encyclopedia of Computational Neuroscience, 1–6. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_625-1.
Pełny tekst źródłaJardri, Renaud, i Sophie Denève. "Computational Models of Hallucinations". W The Neuroscience of Hallucinations, 289–313. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-4121-2_16.
Pełny tekst źródłaStreszczenia konferencji na temat "COMPUTATIONAL NEUROSCIENCE MODELS"
Tirupattur, Naveen, Christopher C. Lapish, Snehasis Mukhopadhyay, Tuan D. Pham, Xiaobo Zhou, Hiroshi Tanaka, Mayumi Oyama-Higa i in. "Text Mining for Neuroscience". W 2011 INTERNATIONAL SYMPOSIUM ON COMPUTATIONAL MODELS FOR LIFE SCIENCES (CMLS-11). AIP, 2011. http://dx.doi.org/10.1063/1.3596634.
Pełny tekst źródłaMohnert, Florian, Mateo Tošić i Falk Lieder. "Testing Computational Models of Goal Pursuit". W 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1350-0.
Pełny tekst źródłaUchiyama, Ryutaro, Claudio Tennie i Charley Wu. "Model-Based Assimilation Transmits and Recombines World Models". W 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1722-0.
Pełny tekst źródłaMuzellec, Sabine, Mathieu Chalvidal, Thomas Serre i Rufin VanRullen. "Accurate implementation of computational neuroscience models through neural ODEs". W 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1165-0.
Pełny tekst źródłaBelledonne, Mario, Chloë Geller i Ilker Yildirim. "Goal-conditioned world models: Adaptive computation over multi-granular generative models explains human scene perception". W 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1663-0.
Pełny tekst źródłaSpeekenbrink, Maarten. "Identifiability of Gaussian Bayesian bandit models". W 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1335-0.
Pełny tekst źródłaBaltieri, Manuel, i Christopher L. Buckley. "Active Inference: Computational Models of Motor Control without Efference Copy". W 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1144-0.
Pełny tekst źródłaYao, Yuanwei, Tatia Buidze i Jan Gläscher. "Effectiveness of different computational models during the Tacit Communication Game". W 2023 Conference on Cognitive Computational Neuroscience. Oxford, United Kingdom: Cognitive Computational Neuroscience, 2023. http://dx.doi.org/10.32470/ccn.2023.1268-0.
Pełny tekst źródłaWeidinger, Laura, Andrea Gradassi, Lucas Molleman i Wouter van den Bos. "Test-retest reliability of canonical reinforcement learning models". W 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1053-0.
Pełny tekst źródłaCeja, Vanessa, Yussuf Ezzeldine i Megan A. K. Peters. "Models of confidence to facilitate engaging task designs". W 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1150-0.
Pełny tekst źródłaRaporty organizacyjne na temat "COMPUTATIONAL NEUROSCIENCE MODELS"
Semerikov, Serhiy O., Illia O. Teplytskyi, Yuliia V. Yechkalo i Arnold E. Kiv. Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. [б. в.], listopad 2018. http://dx.doi.org/10.31812/123456789/2648.
Pełny tekst źródła