Gotowa bibliografia na temat „Computational neuroimaging”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Computational neuroimaging”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Computational neuroimaging"
Stephan, Klaas E., Sandra Iglesias, Jakob Heinzle i Andreea O. Diaconescu. "Translational Perspectives for Computational Neuroimaging". Neuron 87, nr 4 (sierpień 2015): 716–32. http://dx.doi.org/10.1016/j.neuron.2015.07.008.
Pełny tekst źródłaPotter, Aneirin. "044 At what resolution does the brain perform computations?" Journal of Neurology, Neurosurgery & Psychiatry 93, nr 9 (12.08.2022): e2.239. http://dx.doi.org/10.1136/jnnp-2022-abn2.88.
Pełny tekst źródłaWandell, Brian A. "COMPUTATIONAL NEUROIMAGING OF HUMAN VISUAL CORTEX". Annual Review of Neuroscience 22, nr 1 (marzec 1999): 145–73. http://dx.doi.org/10.1146/annurev.neuro.22.1.145.
Pełny tekst źródłaWandell, Brian A., i Jonathan Winawer. "Computational neuroimaging and population receptive fields". Trends in Cognitive Sciences 19, nr 6 (czerwiec 2015): 349–57. http://dx.doi.org/10.1016/j.tics.2015.03.009.
Pełny tekst źródłaFriston, Karl J., i Raymond J. Dolan. "Computational and dynamic models in neuroimaging". NeuroImage 52, nr 3 (wrzesień 2010): 752–65. http://dx.doi.org/10.1016/j.neuroimage.2009.12.068.
Pełny tekst źródłaStephan, K. E., F. Schlagenhauf, Q. J. M. Huys, S. Raman, E. A. Aponte, K. H. Brodersen, L. Rigoux i in. "Computational neuroimaging strategies for single patient predictions". NeuroImage 145 (styczeń 2017): 180–99. http://dx.doi.org/10.1016/j.neuroimage.2016.06.038.
Pełny tekst źródłaDi Ieva, Antonio, Mounir Boukadoum, Salim Lahmiri i Michael D. Cusimano. "Computational Analyses of Arteriovenous Malformations in Neuroimaging". Journal of Neuroimaging 25, nr 3 (17.12.2014): 354–60. http://dx.doi.org/10.1111/jon.12200.
Pełny tekst źródłaPoldrack, Russell A., Krzysztof J. Gorgolewski i Gaël Varoquaux. "Computational and Informatic Advances for Reproducible Data Analysis in Neuroimaging". Annual Review of Biomedical Data Science 2, nr 1 (20.07.2019): 119–38. http://dx.doi.org/10.1146/annurev-biodatasci-072018-021237.
Pełny tekst źródłaRitter, Petra, Michael Schirner, Anthony R. McIntosh i Viktor K. Jirsa. "The Virtual Brain Integrates Computational Modeling and Multimodal Neuroimaging". Brain Connectivity 3, nr 2 (kwiecień 2013): 121–45. http://dx.doi.org/10.1089/brain.2012.0120.
Pełny tekst źródłaGoldstein-Piekarski, Andrea N., Bailey Holt-Gosselin, Kathleen O’Hora i Leanne M. Williams. "Integrating sleep, neuroimaging, and computational approaches for precision psychiatry". Neuropsychopharmacology 45, nr 1 (19.08.2019): 192–204. http://dx.doi.org/10.1038/s41386-019-0483-8.
Pełny tekst źródłaRozprawy doktorskie na temat "Computational neuroimaging"
Macoveanu, Julian. "Neural mechanisms underlying working memory : computational and neuroimaging studies /". Stockholm, 2006. http://diss.kib.ki.se/2006/91-7140-901-7/.
Pełny tekst źródłaWhalley, Matthew G. "Autobiographical memory in depression : neuroimaging and computational linguistic investigation". Thesis, University of London, 2010. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.542382.
Pełny tekst źródłaCattinelli, I. "INVESTIGATIONS ON COGNITIVE COMPUTATION AND COMPUTATIONAL COGNITION". Doctoral thesis, Università degli Studi di Milano, 2011. http://hdl.handle.net/2434/155482.
Pełny tekst źródłaGradin, Iade Victoria B. "Major depression and schizophrenia : investigation of neural mechanisms using neuroimaging and computational modeling of brain function". Thesis, University of Aberdeen, 2011. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=184011.
Pełny tekst źródłaSalimi-Khorshidi, Gholamreza. "Statistical models for neuroimaging meta-analytic inference". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:40a10327-7f36-42e7-8120-ae04bd8be1d4.
Pełny tekst źródłaD'ANGELO, LAURA. "Bayesian modeling of calcium imaging data". Doctoral thesis, Università degli Studi di Padova, 2022. https://hdl.handle.net/10281/399067.
Pełny tekst źródłaPetitet, Pierre. "Sensorimotor adaptation : mechanisms, modulation and rehabilitation potential". Thesis, University of Oxford, 2018. http://ora.ox.ac.uk/objects/uuid:5935d96d-625a-4778-b42d-bb56c96d96cc.
Pełny tekst źródłaWeiler, Florian [Verfasser], Horst [Akademischer Betreuer] Hahn, Horst [Gutachter] Hahn, Lars [Gutachter] Linsen, Bernhard [Gutachter] Preim i Jan [Gutachter] Klein. "Computational tools for objective assessment in Neuroimaging / Florian Weiler ; Gutachter: Horst Hahn, Lars Linsen, Bernhard Preim, Jan Klein ; Betreuer: Horst Hahn". Bremen : IRC-Library, Information Resource Center der Jacobs University Bremen, 2020. http://d-nb.info/1203875983/34.
Pełny tekst źródłaIyappan, Anandhi [Verfasser]. "Conceptualization of computational modeling approaches and interpretation of the role of neuroimaging indices in pathomechanisms for pre-clinical detection of Alzheimer Disease / Anandhi Iyappan". Bonn : Universitäts- und Landesbibliothek Bonn, 2018. http://d-nb.info/1173789685/34.
Pełny tekst źródłaGloaguen, Arnaud. "A statistical and computational framework for multiblock and multiway data analysis". Electronic Thesis or Diss., université Paris-Saclay, 2020. http://www.theses.fr/2020UPASG016.
Pełny tekst źródłaA challenging problem in multivariate statistics is to study relationships between several sets of variables measured on the same set of individuals. In the literature, this paradigm can be stated under several names as “learning from multimodal data”, “data integration”, “data fusion” or “multiblock data analysis”. Typical examples are found in a large variety of fields such as biology, chemistry, sensory analysis, marketing, food research, where the common general objective is to identify variables of each block that are active in the relationships with other blocks. Moreover, each block can be composed of a high number of measurements (~1M), which involves the computation of billion(s) of associations. A successful investigation of such a dataset requires developing a computational and statistical framework that fits both the peculiar structure of the data as well as its heterogeneous nature.The development of multivariate statistical methods constitutes the core of this work. All these developments find their foundations on Regularized Generalized Canonical Correlation Analysis (RGCCA), a flexible framework for multiblock data analysis that grasps in a single optimization problem many well known multiblock methods. The RGCCA algorithm consists in a single yet very simple update repeated until convergence. If this update is gifted with certain conditions, the global convergence of the procedure is guaranteed. Throughout this work, the optimization framework of RGCCA has been extended in several directions:(i) From sequential to global. We extend RGCCA from a sequential procedure to a global one by extracting all the block components simultaneously with a single optimization problem.(ii) From matrix to higher order tensors. Multiway Generalized Canonical Correlation Analysis (MGCCA) has been proposed as an extension of RGCCA to higher order tensors. Sequential and global strategies have been designed for extracting several components per block. The different variants of the MGCCA algorithm are globally convergent under mild conditions.(iii) From sparsity to structured sparsity. The core of the Sparse Generalized Canonical Correlation Analysis (SGCCA) algorithm has been improved. It provides a much faster globally convergent algorithm. SGCCA has been extended to handle structured sparse penalties.In the second part, the versatility and usefulness of the proposed methods have been investigated on various studies: (i) two imaging-genetic studies, (ii) two Electroencephalography studies and (iii) one Raman Microscopy study. For these analyses, the focus is made on the interpretation of the results eased by considering explicitly the multiblock, tensor and sparse structures
Książki na temat "Computational neuroimaging"
Li, Ping, i Hua Shu. Language and the brain: computational and neuroimaging evidence from Chinese. Oxford University Press, 2010. http://dx.doi.org/10.1093/oxfordhb/9780199541850.013.0007.
Pełny tekst źródłaTang, Xiaoying, Thomas Fletcher i Michael I. Miller, red. Bayesian Estimation and Inference in Computational Anatomy and Neuroimaging: Methods & Applications. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-984-1.
Pełny tekst źródłaSensory Nervous System - Computational Neuroimaging Investigations of Topographical Organization in Human Sensory Cortex [Working Title]. IntechOpen, 2022. http://dx.doi.org/10.5772/intechopen.98172.
Pełny tekst źródłaAdams, Reginald B., Daniel N. Albohn i Kestutis Kveraga. A Social Vision Account of Facial Expression Perception. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780190613501.003.0017.
Pełny tekst źródłaChung, Moo K. Statistical and Computational Methods in Brain Image Analysis. Taylor & Francis Group, 2013.
Znajdź pełny tekst źródłaStatistical and Computational Methods in Brain Image Analysis. Taylor & Francis Group, 2013.
Znajdź pełny tekst źródłaChung, Moo K. Statistical and Computational Methods in Brain Image Analysis. Taylor & Francis Group, 2013.
Znajdź pełny tekst źródłaChung, Moo K. Statistical and Computational Methods in Brain Image Analysis. Taylor & Francis Group, 2013.
Znajdź pełny tekst źródłaRoggeman, Chantal, Wim Fias i Tom Verguts. Basic Number Representation and Beyond. Redaktorzy Roi Cohen Kadosh i Ann Dowker. Oxford University Press, 2015. http://dx.doi.org/10.1093/oxfordhb/9780199642342.013.68.
Pełny tekst źródłaShaikh, Mohd Faraz. Machine Learning in Detecting Auditory Sequences in Magnetoencephalography Data : Research Project in Computational Modelling and Simulation. Technische Universität Dresden, 2021. http://dx.doi.org/10.25368/2022.411.
Pełny tekst źródłaCzęści książek na temat "Computational neuroimaging"
Hanson, Stephen José, Michiro Negishi i Catherine Hanson. "Connectionist Neuroimaging". W Emergent Neural Computational Architectures Based on Neuroscience, 560–76. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44597-8_40.
Pełny tekst źródłaLahmiri, Salim, Mounir Boukadoum i Antonio Di Ieva. "Fractals in Neuroimaging". W Springer Series in Computational Neuroscience, 295–309. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3995-4_19.
Pełny tekst źródłaRay, Kimberly, i Angela Marie Richmond Laird. "Meta-analysis in Neuroimaging". W Encyclopedia of Computational Neuroscience, 1687–89. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_542.
Pełny tekst źródłaRay, Kimberly, i Angela Laird. "Meta-analysis in Neuroimaging". W Encyclopedia of Computational Neuroscience, 1–3. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_542-1.
Pełny tekst źródłaKawato, Mitsuo. "Brain-Machine Interface and Neuroimaging". W Encyclopedia of Computational Neuroscience, 441–43. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_523.
Pełny tekst źródłaPoline, Jean Baptiste, i David Kennedy. "Software for Neuroimaging Data Analysis". W Encyclopedia of Computational Neuroscience, 2733–44. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_538.
Pełny tekst źródłaOzaki, Tohru. "Statistical Analysis of Neuroimaging Data". W Encyclopedia of Computational Neuroscience, 2868–70. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_539.
Pełny tekst źródłaBojak, Ingo, i Michael Breakspear. "Neuroimaging, Neural Population Models for". W Encyclopedia of Computational Neuroscience, 1919–44. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-6675-8_70.
Pełny tekst źródłaKawato, Mitsuo. "Brain Machine Interface and Neuroimaging". W Encyclopedia of Computational Neuroscience, 1–3. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_523-1.
Pełny tekst źródłaPoline, Jean Baptiste, i David Kennedy. "Software for Neuroimaging Data Analysis". W Encyclopedia of Computational Neuroscience, 1–14. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-1-4614-7320-6_538-1.
Pełny tekst źródłaStreszczenia konferencji na temat "Computational neuroimaging"
Wandell, Brian A., i Robert F. Dougherty. "Computational neuroimaging: maps and tracks in the human brain". W Electronic Imaging 2006, redaktorzy Bernice E. Rogowitz, Thrasyvoulos N. Pappas i Scott J. Daly. SPIE, 2006. http://dx.doi.org/10.1117/12.674141.
Pełny tekst źródłaMayrand, Robin Perry, Christian Yaphet Freytes, Luana Okino Sawada, Micheal Adeyosoye, Rosie E. Curiel Cid, David Lowenstein, Ranjan Duara i Malek Adjouadi. "Computational Analysis of a Light-Weight SUVr Processing Technique for Neuroimaging Alzheimer's Disease". W 2022 International Conference on Computational Science and Computational Intelligence (CSCI). IEEE, 2022. http://dx.doi.org/10.1109/csci58124.2022.00317.
Pełny tekst źródłaSteinkamp, Simon, Iyadh Chaker, Félix Hubert, David Meder i Oliver Hulme. "Computational Parametric Mapping: A Method For Mapping Cognitive Models Onto Neuroimaging Data". W 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1124-0.
Pełny tekst źródłaBaykova, Reny, i Warrick Roseboom. "Effects of Sensory Precision on Behavioral and Neuroimaging Perceptual Biases in Duration Estimation". W 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1280-0.
Pełny tekst źródłaObafemi-Ajayi, Tayo, Khalid Al-Jabery, Lauren Salminen, David Laidlaw, Ryan Cabeen, Donald Wunsch i Robert Paul. "Neuroimaging biomarkers of cognitive decline in healthy older adults via unified learning". W 2017 IEEE Symposium Series on Computational Intelligence (SSCI). IEEE, 2017. http://dx.doi.org/10.1109/ssci.2017.8280937.
Pełny tekst źródłaKemtur, Anirudha, Francois Paugam, Basile Pinsard, Pravish sainath, Yann Harel, Maximilien Le clei, Julie Boyle, Karim Jerbi i Pierre Bellec. "AI-based modeling of brain and behavior: Combining neuroimaging, imitation learning and video games". W 2022 Conference on Cognitive Computational Neuroscience. San Francisco, California, USA: Cognitive Computational Neuroscience, 2022. http://dx.doi.org/10.32470/ccn.2022.1303-0.
Pełny tekst źródłaThomas, Armin, Hauke R. Heekeren, Klaus-Robert Müller i Wojciech Samek. "DeepLight: A Structured Framework For The Analysis of Neuroimaging Data Through Recurrent Deep Learning Models". W 2019 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2019. http://dx.doi.org/10.32470/ccn.2019.1226-0.
Pełny tekst źródłaEnyagina, I., A. Polyakov i D. Kokovin. "SERVICES OF COMPUTATIONAL NEUROBIOLOGY TASKS, BASED ON THE DISTRIBUTED MODULAR PLATFORM «DIGITAL LABORATORY» NRC «KURCHATOV INSTITUTE»". W 9th International Conference "Distributed Computing and Grid Technologies in Science and Education". Crossref, 2021. http://dx.doi.org/10.54546/mlit.2021.13.75.001.
Pełny tekst źródłaNiu, Xin, Hualou Liang i Fengqing Zhang. "Brain age prediction for post-traumatic stress disorder patients with convolutional neural networks: a multi-modal neuroimaging study". W 2018 Conference on Cognitive Computational Neuroscience. Brentwood, Tennessee, USA: Cognitive Computational Neuroscience, 2018. http://dx.doi.org/10.32470/ccn.2018.1121-0.
Pełny tekst źródłaGarimella, Harsha T., i Reuben H. Kraft. "Validation of Embedded Element Method in the Prediction of White Matter Disruption in Concussions". W ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-67785.
Pełny tekst źródłaRaporty organizacyjne na temat "Computational neuroimaging"
Cohen, Jonathan D. Second Generation Flexible Computing Environment for Computational Modeling of Brain Function and Neuroimaging Data Analysis. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2010. http://dx.doi.org/10.21236/ada530764.
Pełny tekst źródła