Artykuły w czasopismach na temat „COMPUTATIONAL MODELLING OF RAIL WHEEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „COMPUTATIONAL MODELLING OF RAIL WHEEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Fajdiga, Gorazd, Matjaž Šraml i Janez Kramar. "Modelling of Rolling Contact Fatigue of Rails". Key Engineering Materials 324-325 (listopad 2006): 987–90. http://dx.doi.org/10.4028/www.scientific.net/kem.324-325.987.
Pełny tekst źródłaAn, Boyang, Jing Wen, Panjie Wang, Ping Wang, Rong Chen i Jingmang Xu. "Numerical Investigation into the Effect of Geometric Gap Idealisation on Wheel-Rail Rolling Contact in Presence of Yaw Angle". Mathematical Problems in Engineering 2019 (2.04.2019): 1–14. http://dx.doi.org/10.1155/2019/9895267.
Pełny tekst źródłaXu, Lei, Qiang Zhang, Zhiwu Yu i Zhihui Zhu. "Vehicle–track interaction with consideration of rail irregularities at three-dimensional space". Journal of Vibration and Control 26, nr 15-16 (14.01.2020): 1228–40. http://dx.doi.org/10.1177/1077546319894816.
Pełny tekst źródłaDižo, Ján, Miroslav Blatnický, Jozef Harušinec i Andrej Suchánek. "Assessment of Dynamics of a Rail Vehicle in Terms of Running Properties While Moving on a Real Track Model". Symmetry 14, nr 3 (6.03.2022): 536. http://dx.doi.org/10.3390/sym14030536.
Pełny tekst źródłaBaeza, L., F. J. Fuenmayor, J. Carballeira i A. Roda. "Influence of the wheel-rail contact instationary process on contact parameters". Journal of Strain Analysis for Engineering Design 42, nr 5 (1.07.2007): 377–87. http://dx.doi.org/10.1243/03093247jsa247.
Pełny tekst źródłaZhao, Jing, Edwin A. H. Vollebregt i Cornelis W. Oosterlee. "EXTENDING THE BEM FOR ELASTIC CONTACT PROBLEMS BEYOND THE HALF-SPACE APPROACH". Mathematical Modelling and Analysis 21, nr 1 (26.01.2016): 119–41. http://dx.doi.org/10.3846/13926292.2016.1138418.
Pełny tekst źródłaAn, Boyang, Daolin Ma, Ping Wang, Jiayi Zhou, Rong Chen, Jingmang Xu i Dabin Cui. "Assessing the fast non-Hertzian methods based on the simulation of wheel–rail rolling contact and wear distribution". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 234, nr 5 (9.05.2019): 524–37. http://dx.doi.org/10.1177/0954409719848592.
Pełny tekst źródłaRamalho, A. "Wear modelling in rail–wheel contact". Wear 330-331 (maj 2015): 524–32. http://dx.doi.org/10.1016/j.wear.2015.01.067.
Pełny tekst źródłaWu, Qing, Maksym Spiryagin, Peter Wolfs i Colin Cole. "Traction modelling in train dynamics". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 233, nr 4 (30.08.2018): 382–95. http://dx.doi.org/10.1177/0954409718795496.
Pełny tekst źródłaTao, Gongquan, Zefeng Wen, Xin Zhao i Xuesong Jin. "Effects of wheel–rail contact modelling on wheel wear simulation". Wear 366-367 (listopad 2016): 146–56. http://dx.doi.org/10.1016/j.wear.2016.05.010.
Pełny tekst źródłaDailydka, Stasys, Leonas Povilas Lingaitis, Sergey Myamlin i Vladimir Prichodko. "MODELLING THE INTERACTION BETWEEN RAILWAY WHEEL AND RAIL". TRANSPORT 23, nr 3 (30.09.2008): 236–39. http://dx.doi.org/10.3846/1648-4142.2008.23.236-239.
Pełny tekst źródłaThompson, D. J. "Theoretical Modelling of Wheel-Rail Noise Generation". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 205, nr 2 (lipiec 1991): 137–49. http://dx.doi.org/10.1243/pime_proc_1991_205_227_02.
Pełny tekst źródłaMa, Xiaoqi, Lin Jing i Liangliang Han. "A computational simulation study on the dynamic response of high-speed wheel–rail system in rolling contact". Advances in Mechanical Engineering 10, nr 11 (listopad 2018): 168781401880921. http://dx.doi.org/10.1177/1687814018809215.
Pełny tekst źródłaJelila, Y. D., H. G. Lemu, W. Pamuła i G. G. Sirata. "Fatigue life analysis of wheel-rail contacts at railway turnouts using finite element modelling approach." IOP Conference Series: Materials Science and Engineering 1201, nr 1 (1.11.2021): 012047. http://dx.doi.org/10.1088/1757-899x/1201/1/012047.
Pełny tekst źródłaBhaskar, A., K. L. Johnson, G. D. Wood i J. Woodhouse. "Wheel-rail dynamics with closely conformal contact Part 1: Dynamic modelling and stability analysis". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 211, nr 1 (1.01.1997): 11–26. http://dx.doi.org/10.1243/0954409971530860.
Pełny tekst źródłaPradhan i Samantaray. "A Recursive Wheel Wear and Vehicle Dynamic Performance Evolution Computational Model for Rail Vehicles with Tread Brakes". Vehicles 1, nr 1 (17.04.2019): 88–114. http://dx.doi.org/10.3390/vehicles1010006.
Pełny tekst źródłaLewandowski, Mirosław, Wiesław Grzesikiewicz, Michał Makowski i Katarzyna Rutczyńska-Wdowiak. "Modelling and simulation of Adhesion of the RAIL vehicle". Journal of Automation, Electronics and Electrical Engineering 4, nr 2 (31.12.2022): 17–21. http://dx.doi.org/10.24136/jaeee.2022.008.
Pełny tekst źródłaColeman, I., E. Kassa i R. Smith. "Wheel-Rail Contact Modelling within Switches and Crossings". International Journal of Railway Technology 1, nr 2 (2012): 45–66. http://dx.doi.org/10.4203/ijrt.1.2.3.
Pełny tekst źródłaTrummer, Gerald, Zing Siang Lee, Roger Lewis i Klaus Six. "Modelling of Frictional Conditions in the Wheel–Rail Interface Due to Application of Top-of-Rail Products". Lubricants 9, nr 10 (8.10.2021): 100. http://dx.doi.org/10.3390/lubricants9100100.
Pełny tekst źródłaChiba, Elhocine, Mourad Abdelkrim, Abderrahim Belloufi i Imane Rezgui. ""THREE-DIMENSIONAL MODELLING OF RAILS / WHEELS MANUFACTURED BY ER6 AND ER7 IN TRAMWAY APPLICATIONS "". International Journal of Modern Manufacturing Technologies 14, nr 3 (20.12.2022): 38–43. http://dx.doi.org/10.54684/ijmmt.2022.14.3.38.
Pełny tekst źródłaSteenbergen, Michaël J. M. M. "Modelling of wheels and rail discontinuities in dynamic wheel–rail contact analysis". Vehicle System Dynamics 44, nr 10 (październik 2006): 763–87. http://dx.doi.org/10.1080/00423110600648535.
Pełny tekst źródłaWu, Yi, Jing Zeng, Sheng Qu, Huailong Shi, Qunsheng Wang i Lai Wei. "Low-Frequency Carbody Sway Modelling Based on Low Wheel-Rail Contact Conicity Analysis". Shock and Vibration 2020 (21.12.2020): 1–17. http://dx.doi.org/10.1155/2020/6671049.
Pełny tekst źródłaGuiral, A., A. Alonso, L. Baeza i J. G. Giménez. "Non-steady state modelling of wheel–rail contact problem". Vehicle System Dynamics 51, nr 1 (styczeń 2013): 91–108. http://dx.doi.org/10.1080/00423114.2012.713499.
Pełny tekst źródłaCai, Guanmian, Zhihui Zhu, Wei Gong, Gaoyang Zhou, Lizhong Jiang i Bailong Ye. "Influence of Wheel-Rail Contact Algorithms on Running Safety Assessment of Trains under Earthquakes". Applied Sciences 13, nr 9 (22.04.2023): 5230. http://dx.doi.org/10.3390/app13095230.
Pełny tekst źródłaAlizadeh Kaklar, J., R. Ghajar i H. Tavakkoli. "Modelling of nonlinear hunting instability for a high-speed railway vehicle equipped by hollow worn wheels". Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 230, nr 4 (3.08.2016): 553–67. http://dx.doi.org/10.1177/1464419316636968.
Pełny tekst źródłaShih, J. Y., R. Ambur, H. C. Boghani, R. Dixon i E. Stewart. "A New Switch and Crossing Design: Introducing the Back to Back Bistable Switch". Journal of Civil Engineering and Construction 9, nr 4 (15.11.2020): 175–86. http://dx.doi.org/10.32732/jcec.2020.9.4.175.
Pełny tekst źródłaPombo, João, i Jorge Ambrosio. "A computational efficient general wheel-rail contact detection method". Journal of Mechanical Science and Technology 19, S1 (styczeń 2005): 411–21. http://dx.doi.org/10.1007/bf02916162.
Pełny tekst źródłaCroft, B. E., C. J. C. Jones i D. J. Thompson. "Modelling the effect of rail dampers on wheel–rail interaction forces and rail roughness growth rates". Journal of Sound and Vibration 323, nr 1-2 (czerwiec 2009): 17–32. http://dx.doi.org/10.1016/j.jsv.2008.12.013.
Pełny tekst źródłaPieringer, A., W. Kropp i J. C. O. Nielsen. "The influence of contact modelling on simulated wheel/rail interaction due to wheel flats". Wear 314, nr 1-2 (czerwiec 2014): 273–81. http://dx.doi.org/10.1016/j.wear.2013.12.005.
Pełny tekst źródłaSichani, M. Sh, R. Enblom i M. Berg. "Non-Elliptic Wheel-Rail Contact Modelling in Vehicle Dynamics Simulation". International Journal of Railway Technology 3, nr 3 (2014): 77–96. http://dx.doi.org/10.4203/ijrt.3.3.5.
Pełny tekst źródłaBurgelman, Nico, Matin Sh Sichani, Roger Enblom, Mats Berg, Zili Li i Rolf Dollevoet. "Influence of wheel–rail contact modelling on vehicle dynamic simulation". Vehicle System Dynamics 53, nr 8 (14.05.2015): 1190–203. http://dx.doi.org/10.1080/00423114.2015.1039550.
Pełny tekst źródłaRovira, A., A. Roda, M. B. Marshall, H. Brunskill i R. Lewis. "Experimental and numerical modelling of wheel–rail contact and wear". Wear 271, nr 5-6 (czerwiec 2011): 911–24. http://dx.doi.org/10.1016/j.wear.2011.03.024.
Pełny tekst źródłaAlonso, Asier, Carlos Casanueva, Javier Perez i Sebastian Stichel. "Modelling of rough wheel-rail contact for physical damage calculations". Wear 436-437 (październik 2019): 202957. http://dx.doi.org/10.1016/j.wear.2019.202957.
Pełny tekst źródłaZhang, ShuGuang, WeiHua Zhang i XueSong Jin. "Dynamics of high speed wheel/rail system and its modelling". Chinese Science Bulletin 52, nr 11 (czerwiec 2007): 1566–75. http://dx.doi.org/10.1007/s11434-007-0213-1.
Pełny tekst źródłaTHOMPSON, D. J., i C. J. C. JONES. "A REVIEW OF THE MODELLING OF WHEEL/RAIL NOISE GENERATION". Journal of Sound and Vibration 231, nr 3 (marzec 2000): 519–36. http://dx.doi.org/10.1006/jsvi.1999.2542.
Pełny tekst źródłaZhong, Shuoqiao, Xinbiao Xiao, Zefeng Wen i Xuesong Jin. "Effect of wheelset flexibility on wheel–rail contact behavior and a specific coupling of wheel–rail contact to flexible wheelset". Acta Mechanica Sinica 32, nr 2 (25.08.2015): 252–64. http://dx.doi.org/10.1007/s10409-015-0441-6.
Pełny tekst źródłaLisowski, Filip, i Edward Lisowski. "Optimization of ER8 and 42CrMo4 Steel Rail Wheel for Road–Rail Vehicles". Applied Sciences 10, nr 14 (8.07.2020): 4717. http://dx.doi.org/10.3390/app10144717.
Pełny tekst źródłaGautam, Aishwarya, i Sheldon I. Green. "Computational fluid dynamics–discrete element method simulation of locomotive sanders". Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit 235, nr 1 (4.02.2020): 12–21. http://dx.doi.org/10.1177/0954409720902897.
Pełny tekst źródłaChang, Chao, Liang Ling, Zhaoling Han, Kaiyun Wang i Wanming Zhai. "High-Speed Train-Track-Bridge Dynamic Interaction considering Wheel-Rail Contact Nonlinearity due to Wheel Hollow Wear". Shock and Vibration 2019 (31.10.2019): 1–18. http://dx.doi.org/10.1155/2019/5874678.
Pełny tekst źródłaParakhnenko, Inna, Sergey Akkerman, Andrey Romanov i Oksana Shalamova. "Influence of change in frictional condition of track rail surfaces on interaction forces in the “wheel/rail” contact". E3S Web of Conferences 296 (2021): 02005. http://dx.doi.org/10.1051/e3sconf/202129602005.
Pełny tekst źródłaNicholson, G. L., i C. L. Davis. "Modelling of the response of an ACFM sensor to rail and rail wheel RCF cracks". NDT & E International 46 (marzec 2012): 107–14. http://dx.doi.org/10.1016/j.ndteint.2011.11.010.
Pełny tekst źródłaŽygienė, Rasa, Marijonas Bogdevičius i Laima Dabulevičienė. "A MATHEMATICAL MODEL AND SIMULATION RESULTS OF THE DYNAMIC SYSTEM RAILWAY VEHICLE WHEEL–TRACK WITH A WHEEL FLAT / DINAMINĖS SISTEMOS „GELEŽINKELIŲ VAGONO RATAS – KELIAS“ SU RATO IŠČIUOŽA MATEMATINIS MODELIS IR MODELIAVIMO REZULTATAI". Mokslas – Lietuvos ateitis 6, nr 5 (19.12.2014): 531–37. http://dx.doi.org/10.3846/mla.2014.696.
Pełny tekst źródłaSirata, G. G., H. G. Lemu, K. Waclawiak i Y. D. Jelila. "Study of rail-wheel contact problem by analytical and numerical approaches". IOP Conference Series: Materials Science and Engineering 1201, nr 1 (1.11.2021): 012035. http://dx.doi.org/10.1088/1757-899x/1201/1/012035.
Pełny tekst źródłaSix, K., A. Meierhofer, G. Trummer, C. Marte, G. Müller, B. Luber, P. Dietmaier i M. Rosenberger. "Classification and Consideration of Plasticity Phenomena in Wheel-Rail Contact Modelling". International Journal of Railway Technology 5, nr 3 (2016): 55–77. http://dx.doi.org/10.4203/ijrt.5.3.3.
Pełny tekst źródłaGoryacheva, I. G., S. N. Soshenkov i E. V. Torskaya. "Modelling of wear and fatigue defect formation in wheel–rail contact". Vehicle System Dynamics 51, nr 6 (czerwiec 2013): 767–83. http://dx.doi.org/10.1080/00423114.2011.602419.
Pełny tekst źródłaLUNDÉN, R. "Elastoplastic modelling of subsurface crack growth in rail/wheel contact problems". Fatigue & Fracture of Engineering Materials and Structures 30, nr 10 (październik 2007): 905–14. http://dx.doi.org/10.1111/j.1460-2695.2007.01160.x.
Pełny tekst źródłaSchupp, Gunter, Christoph Weidemann i Lutz Mauer. "Modelling the Contact Between Wheel and Rail Within Multibody System Simulation". Vehicle System Dynamics 41, nr 5 (maj 2004): 349–64. http://dx.doi.org/10.1080/00423110412331300326.
Pełny tekst źródłaAsih, A. M. S., K. Ding i A. Kapoor. "Modelling the Effect of Steady State Wheel Temperature on Rail Wear". Tribology Letters 49, nr 1 (30.10.2012): 239–49. http://dx.doi.org/10.1007/s11249-012-0061-2.
Pełny tekst źródłaJönsson, J., E. Svensson i J. T. Christensen. "Strain gauge measurement of wheel-rail interaction forces". Journal of Strain Analysis for Engineering Design 32, nr 3 (1.04.1997): 183–91. http://dx.doi.org/10.1243/0309324971513328.
Pełny tekst źródłaSuhr, Bettina, William A. Skipper, Roger Lewis i Klaus Six. "Sanded Wheel–Rail Contacts: Experiments on Sand Crushing Behaviour". Lubricants 11, nr 2 (20.01.2023): 38. http://dx.doi.org/10.3390/lubricants11020038.
Pełny tekst źródła