Gotowa bibliografia na temat „Computational methods in biomedical optical imaging”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Computational methods in biomedical optical imaging”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Computational methods in biomedical optical imaging"
Liu, Xueyan, Dong Peng, Wei Guo, Xibo Ma, Xin Yang i Jie Tian. "Compressed Sensing Photoacoustic Imaging Based on Fast Alternating Direction Algorithm". International Journal of Biomedical Imaging 2012 (2012): 1–7. http://dx.doi.org/10.1155/2012/206214.
Pełny tekst źródłaLaurino, Annunziatina, Alessandra Franceschini, Luca Pesce, Lorenzo Cinci, Alberto Montalbano, Giacomo Mazzamuto, Giuseppe Sancataldo i in. "A Guide to Perform 3D Histology of Biological Tissues with Fluorescence Microscopy". International Journal of Molecular Sciences 24, nr 7 (4.04.2023): 6747. http://dx.doi.org/10.3390/ijms24076747.
Pełny tekst źródłaZaitsev, Vladimir Y., Sergey Y. Ksenofontov, Alexander A. Sovetsky, Alexander L. Matveyev, Lev A. Matveev, Alexey A. Zykov i Grigory V. Gelikonov. "Real-Time Strain and Elasticity Imaging in Phase-Sensitive Optical Coherence Elastography Using a Computationally Efficient Realization of the Vector Method". Photonics 8, nr 12 (24.11.2021): 527. http://dx.doi.org/10.3390/photonics8120527.
Pełny tekst źródłaSridhar, Chethana, Piyush Kumar Pareek, R. Kalidoss, Sajjad Shaukat Jamal, Prashant Kumar Shukla i Stephen Jeswinde Nuagah. "Optimal Medical Image Size Reduction Model Creation Using Recurrent Neural Network and GenPSOWVQ". Journal of Healthcare Engineering 2022 (26.02.2022): 1–8. http://dx.doi.org/10.1155/2022/2354866.
Pełny tekst źródłaHauptman, Ami, Ganesh M. Balasubramaniam i Shlomi Arnon. "Machine Learning Diffuse Optical Tomography Using Extreme Gradient Boosting and Genetic Programming". Bioengineering 10, nr 3 (21.03.2023): 382. http://dx.doi.org/10.3390/bioengineering10030382.
Pełny tekst źródłaJiang, Yuan, Hao Sha, Shuai Liu, Peiwu Qin i Yongbing Zhang. "AutoUnmix: an autoencoder-based spectral unmixing method for multi-color fluorescence microscopy imaging". Biomedical Optics Express 14, nr 9 (22.08.2023): 4814. http://dx.doi.org/10.1364/boe.498421.
Pełny tekst źródłaAkman, Ozgur E., Steven Watterson, Andrew Parton, Nigel Binns, Andrew J. Millar i Peter Ghazal. "Digital clocks: simple Boolean models can quantitatively describe circadian systems". Journal of The Royal Society Interface 9, nr 74 (12.04.2012): 2365–82. http://dx.doi.org/10.1098/rsif.2012.0080.
Pełny tekst źródłaMostaço-Guidolin, Leila B., Michael S. D. Smith, Mark Hewko, Bernie Schattka, Michael G. Sowa, Arkady Major i Alex C. T. Ko. "Fractal dimension and directional analysis of elastic and collagen fiber arrangement in unsectioned arterial tissues affected by atherosclerosis and aging". Journal of Applied Physiology 126, nr 3 (1.03.2019): 638–46. http://dx.doi.org/10.1152/japplphysiol.00497.2018.
Pełny tekst źródłaZhang, Huiting, Dong-Hee Kang, Marie Piantino, Daisuke Tominaga, Takashi Fujimura, Noriyuki Nakatani, J. Nicholas Taylor, Tomomi Furihata, Michiya Matsusaki i Satoshi Fujita. "Rapid Quantification of Microvessels of Three-Dimensional Blood–Brain Barrier Model Using Optical Coherence Tomography and Deep Learning Algorithm". Biosensors 13, nr 8 (15.08.2023): 818. http://dx.doi.org/10.3390/bios13080818.
Pełny tekst źródłaChen, Duan, Guo-Wei Wei, Wen-Xiang Cong i Ge Wang. "Computational methods for optical molecular imaging". Communications in Numerical Methods in Engineering 25, nr 12 (grudzień 2009): 1137–61. http://dx.doi.org/10.1002/cnm.1164.
Pełny tekst źródłaRozprawy doktorskie na temat "Computational methods in biomedical optical imaging"
Birch, Gabriel C. "Computational and Design Methods for Advanced Imaging". Diss., The University of Arizona, 2012. http://hdl.handle.net/10150/242355.
Pełny tekst źródłaBalagopal, Bavishna. "Advanced methods for enhanced sensing in biomedical Raman spectroscopy". Thesis, University of St Andrews, 2014. http://hdl.handle.net/10023/6343.
Pełny tekst źródłaJones, Cameron Christopher. "VALIDATION OF COMPUTATIONAL FLUID DYNAMIC SIMULATIONS OF MEMBRANE ARTIFICIAL LUNGS WITH X-RAY IMAGING". UKnowledge, 2012. http://uknowledge.uky.edu/cbme_etds/2.
Pełny tekst źródłaMontejo, Ludguier. "Computational Methods For The Diagnosis of Rheumatoid Arthritis With Diffuse Optical Tomography". Thesis, 2014. https://doi.org/10.7916/D8NS0S0C.
Pełny tekst źródłaRavi, Prasad K. J. "Development of Efficient Computational Methods for Better Estimation of Optical Properties in Diffuse Optical Tomography". Thesis, 2013. http://etd.iisc.ac.in/handle/2005/3311.
Pełny tekst źródłaRavi, Prasad K. J. "Development of Efficient Computational Methods for Better Estimation of Optical Properties in Diffuse Optical Tomography". Thesis, 2013. http://etd.iisc.ernet.in/2005/3311.
Pełny tekst źródłaGutta, Sreedevi. "Improving photoacoustic imaging with model compensating and deep learning methods". Thesis, 2018. https://etd.iisc.ac.in/handle/2005/4390.
Pełny tekst źródłaNarayana, Swamy Yamuna. "Studies on Kernel Based Edge Detection an Hyper Parameter Selection in Image Restoration and Diffuse Optical Image Reconstruction". Thesis, 2017. http://etd.iisc.ac.in/handle/2005/3615.
Pełny tekst źródłaNarayana, Swamy Yamuna. "Studies on Kernel Based Edge Detection an Hyper Parameter Selection in Image Restoration and Diffuse Optical Image Reconstruction". Thesis, 2017. http://etd.iisc.ernet.in/2005/3615.
Pełny tekst źródłaHarmany, Zachary Taylor. "Computational Optical Imaging Systems: Sensing Strategies, Optimization Methods, and Performance Bounds". Diss., 2012. http://hdl.handle.net/10161/6135.
Pełny tekst źródłaThe emerging theory of compressed sensing has been nothing short of a revolution in signal processing, challenging some of the longest-held ideas in signal processing and leading to the development of exciting new ways to capture and reconstruct signals and images. Although the theoretical promises of compressed sensing are manifold, its implementation in many practical applications has lagged behind the associated theoretical development. Our goal is to elevate compressed sensing from an interesting theoretical discussion to a feasible alternative to conventional imaging, a significant challenge and an exciting topic for research in signal processing. When applied to imaging, compressed sensing can be thought of as a particular case of computational imaging, which unites the design of both the sensing and reconstruction of images under one design paradigm. Computational imaging tightly fuses modeling of scene content, imaging hardware design, and the subsequent reconstruction algorithms used to recover the images.
This thesis makes important contributions to each of these three areas through two primary research directions. The first direction primarily attacks the challenges associated with designing practical imaging systems that implement incoherent measurements. Our proposed snapshot imaging architecture using compressive coded aperture imaging devices can be practically implemented, and comes equipped with theoretical recovery guarantees. It is also straightforward to extend these ideas to a video setting where careful modeling of the scene can allow for joint spatio-temporal compressive sensing. The second direction develops a host of new computational tools for photon-limited inverse problems. These situations arise with increasing frequency in modern imaging applications as we seek to drive down image acquisition times, limit excitation powers, or deliver less radiation to a patient. By an accurate statistical characterization of the measurement process in optical systems, including the inherent Poisson noise associated with photon detection, our class of algorithms is able to deliver high-fidelity images with a fraction of the required scan time, as well as enable novel methods for tissue quantification from intraoperative microendoscopy data. In short, the contributions of this dissertation are diverse, further the state-of-the-art in computational imaging, elevate compressed sensing from an interesting theory to a practical imaging methodology, and allow for effective image recovery in light-starved applications.
Dissertation
Książki na temat "Computational methods in biomedical optical imaging"
V, Tuchin V., red. Handbook of optical biomedical diagnostics. Bellingham: SPIE Press, 2002.
Znajdź pełny tekst źródłaHandbook of optical biomedical diagnostics. Bellingham, Washington: SPIE Press, 2016.
Znajdź pełny tekst źródłaTavares, João Manuel R. S., i Paulo Rui Fernandes, red. New Developments on Computational Methods and Imaging in Biomechanics and Biomedical Engineering. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23073-9.
Pełny tekst źródłaV, Tuchin V., Izatt Joseph A, Fujimoto James G i Society of Photo-optical Instrumentation Engineers., red. Coherence domain optical methods in biomedical science and clinical applications V: 23-24 January 2001, San Jose, USA. Bellingham, Wash., USA: SPIE, 2001.
Znajdź pełny tekst źródłaLi, Xingde, Qingming Luo i Gu Ying. Optics in health care and biomedical optics IV: 18-20 October 2010, Beijing, China. Redaktorzy SPIE (Society), Zhongguo guang xue xue hui, Beijing gong ye xue yuan, Zhongguo ke xue ji shu xie hui, Guo jia zi ran ke xue ji jin wei yuan hui (China) i China. Guo jia ke xue ji shu bu. Bellingham, Wash: SPIE, 2010.
Znajdź pełny tekst źródłaV, Tuchin V., Izatt Joseph A, Fujimoto James G, Society of Photo-optical Instrumentation Engineers. i International Biomedical Optics Society, red. Coherence domain optical methods in biomedical science and clinical applications IV: 24-26 January 2000, San Jose, California. Bellingham, Wash., USA: SPIE, 2000.
Znajdź pełny tekst źródłaV, Tuchin V., Izatt Joseph A, Fujimoto James G i Society of Photo-optical Instrumentation Engineers., red. Coherence domain optical methods in biomedical science and clinical applications VI: 21-23 January 2002, San Jose, USA. Bellingham, Wash: SPIE, 2002.
Znajdź pełny tekst źródłaV, Tuchin V., Izatt Joseph A, Society of Photo-optical Instrumentation Engineers. i International Biomedical Optics Society, red. Proceedings of coherence domain optical methods in biomedical science and clinical applications II: 27-28 January 1998, San Jose, California. Bellingham, Wash., USA: SPIE, 1998.
Znajdź pełny tekst źródłaAntoni, Nowakowski, Kosmowski Bogdan B, Society of Photo-optical Instrumentation Engineers., Politechnika Gdańska. Katedra Inżynierii Biomedycznej. i Poland. Ministerstwo Nauki i Informatyzacji., red. Optical methods, sensors, image processing, and visualization in medicine: 10-13 September, 2003, Gdansk, Poland. Bellingham, Wash: SPIE, 2004.
Znajdź pełny tekst źródłaHandbook of biomedical optics. Boca Raton: CRC Press, 2011.
Znajdź pełny tekst źródłaCzęści książek na temat "Computational methods in biomedical optical imaging"
Garini, Yuval, i Elad Tauber. "Spectral Imaging: Methods, Design, and Applications". W Biomedical Optical Imaging Technologies, 111–61. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-28391-8_4.
Pełny tekst źródłaTavares, João Manuel R. S., i Paulo Rui Fernandes. "Correction to: New Developments on Computational Methods and Imaging in Biomechanics and Biomedical Engineering". W Lecture Notes in Computational Vision and Biomechanics, C1. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-23073-9_11.
Pełny tekst źródłaLiu, Jianfei, Q. Jackie Wu, Fang-Fang Yin, John P. Kirkpatrick, Alvin Cabrera i Yaorong Ge. "An Active Optical Flow Model for Dose Prediction in Spinal SBRT Plans". W Recent Advances in Computational Methods and Clinical Applications for Spine Imaging, 27–35. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-14148-0_3.
Pełny tekst źródłaSevick-Muraca, Eva M. "[31] Computations of time-dependent photon migration for biomedical optical imaging". W Part B: Numerical Computer Methods, 748–81. Elsevier, 1994. http://dx.doi.org/10.1016/s0076-6879(94)40070-9.
Pełny tekst źródła"Medical Imaging Instrumentation and Techniques". W Computational Optical Biomedical Spectroscopy and Imaging, 381–408. CRC Press, 2015. http://dx.doi.org/10.1201/b18024-17.
Pełny tekst źródła"Developing a Comprehensive Taxonomy for Human Cell Types". W Computational Optical Biomedical Spectroscopy and Imaging, 143–72. CRC Press, 2015. http://dx.doi.org/10.1201/b18024-10.
Pełny tekst źródła"Functional Near-Infrared Spectroscopy and Its Applications in Neurosciences". W Computational Optical Biomedical Spectroscopy and Imaging, 173–94. CRC Press, 2015. http://dx.doi.org/10.1201/b18024-11.
Pełny tekst źródła"Computer-Aided Diagnosis of Interstitial Lung Diseases Based on Computed Tomography Image Analysis". W Computational Optical Biomedical Spectroscopy and Imaging, 195–220. CRC Press, 2015. http://dx.doi.org/10.1201/b18024-12.
Pełny tekst źródła"Induced Optical Natural Fluorescence Spectroscopy for Giardia lamblia Cysts". W Computational Optical Biomedical Spectroscopy and Imaging, 221–58. CRC Press, 2015. http://dx.doi.org/10.1201/b18024-13.
Pełny tekst źródła"Strong Interaction between Nanophotonic Structures for Their Applications on Optical Biomedical Spectroscopy and Imaging". W Computational Optical Biomedical Spectroscopy and Imaging, 259–80. CRC Press, 2015. http://dx.doi.org/10.1201/b18024-14.
Pełny tekst źródłaStreszczenia konferencji na temat "Computational methods in biomedical optical imaging"
Ripoll, Jorge, Vasilis Ntziachristos i Eleftherios N. Economou. "Experimental demonstration of a fast analytical method for modeling photon propagation in diffusive media with arbitrary geometry". W European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4431_233.
Pełny tekst źródłaKim, Chang-Keun, Keong-Jin Lee, Dong-Choon Hwang, Seung-Cheol Kim i Eun-Soo Kim. "IVR-based computational reconstruction method in three-dimensional integral imaging with non-uniform lens array". W Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.jma1.
Pełny tekst źródłaShin, Dong-Hak, i Hoon Yoo. "3D image quality enhancement in computational integral imaging system by additional use of an interpolation method". W Biomedical Optics. Washington, D.C.: OSA, 2008. http://dx.doi.org/10.1364/biomed.2008.jma5.
Pełny tekst źródłaEspañol, Malena I., Suren Jayasuriya i Mohit Malu. "Multilevel Methods for Imaging Applications". W Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/cosi.2020.cth4c.1.
Pełny tekst źródłaSchultz, Christian. "The Potential of Optical Methods in Molecular Imaging". W Biomedical Topical Meeting. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/bio.2006.tub3.
Pełny tekst źródłaPaes, Stephane, Seon Young Ryu, Jihoon Na, Eun Seo Choi i Byeong Ha Lee. "Application of iterative deconvolution methods for optical coherent imaging". W Biomedical Optics 2005, redaktorzy Valery V. Tuchin, Joseph A. Izatt i James G. Fujimoto. SPIE, 2005. http://dx.doi.org/10.1117/12.592876.
Pełny tekst źródłaOliveri, Giacomo, i Toshifumi Moriyama. "Compressive Sensing Methods Applied to Inverse Imaging Problems". W Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/cosi.2014.cw2c.3.
Pełny tekst źródłaKaur, S., J. Gomez-Blanco, A. Khalifa, S. Adinarayanan, R. Sanchez-Garcia, D. Wrapp, J. S. McLellan, K. H. Bui i J. Vargas. "Local methods to improve cryo-electron microcopy maps". W Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cosi.2021.ctu4b.3.
Pełny tekst źródłaJohnson, Gregory E., Ash K. Macon i Goran M. Rauker. "Computational imaging design tools and methods". W Optical Science and Technology, the SPIE 49th Annual Meeting, redaktorzy Jose M. Sasian, R. John Koshel, Paul K. Manhart i Richard C. Juergens. SPIE, 2004. http://dx.doi.org/10.1117/12.558068.
Pełny tekst źródłaLepage, K., i S. Kraut. "Multitaper Methods for Spectrum Estimation with a Rotational Shear Interferometer". W Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/cosi.2005.ctuc3.
Pełny tekst źródła