Artykuły w czasopismach na temat „Computational fluid dynamics”

Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Computational fluid dynamics.

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Computational fluid dynamics”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Thabet, Senan, i Thabit H. Thabit. "Computational Fluid Dynamics: Science of the Future". International Journal of Research and Engineering 5, nr 6 (2018): 430–33. http://dx.doi.org/10.21276/ijre.2018.5.6.2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Raza, Md Shamim, Nitesh Kumar i Sourav Poddar. "Combustor Characteristics under Dynamic Condition during Fuel – Air Mixingusing Computational Fluid Dynamics". Journal of Advances in Mechanical Engineering and Science 1, nr 1 (8.08.2015): 20–33. http://dx.doi.org/10.18831/james.in/2015011003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

KAWAMURA, Tetuya, i Hideo TAKAMI. "Computational Fluid Dynamics". Tetsu-to-Hagane 75, nr 11 (1989): 1981–90. http://dx.doi.org/10.2355/tetsutohagane1955.75.11_1981.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Birchall, D. "Computational fluid dynamics". British Journal of Radiology 82, special_issue_1 (styczeń 2009): S1—S2. http://dx.doi.org/10.1259/bjr/26554028.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Lin, Ching-long, Merryn H. Tawhai, Geoffrey Mclennan i Eric A. Hoffman. "Computational fluid dynamics". IEEE Engineering in Medicine and Biology Magazine 28, nr 3 (maj 2009): 25–33. http://dx.doi.org/10.1109/memb.2009.932480.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Wrobel, L. C. "Computational fluid dynamics". Engineering Analysis with Boundary Elements 9, nr 2 (styczeń 1992): 192. http://dx.doi.org/10.1016/0955-7997(92)90070-n.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Pericleous, K. A. "Computational fluid dynamics". International Journal of Heat and Mass Transfer 32, nr 1 (styczeń 1989): 197–98. http://dx.doi.org/10.1016/0017-9310(89)90105-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Von Wendt, J. "Computational fluid dynamics". Journal of Wind Engineering and Industrial Aerodynamics 40, nr 2 (czerwiec 1992): 223. http://dx.doi.org/10.1016/0167-6105(92)90368-k.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Lax, Peter D. "Computational Fluid Dynamics". Journal of Scientific Computing 31, nr 1-2 (25.10.2006): 185–93. http://dx.doi.org/10.1007/s10915-006-9104-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Pitarma, R. A., J. E. Ramos, M. E. Ferreira i M. G. Carvalho. "Computational fluid dynamics". Management of Environmental Quality: An International Journal 15, nr 2 (kwiecień 2004): 102–10. http://dx.doi.org/10.1108/14777830410523053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Leschziner, M. A. "Computational fluid dynamics". International Journal of Heat and Fluid Flow 11, nr 1 (marzec 1990): 82–83. http://dx.doi.org/10.1016/0142-727x(90)90031-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Bhardwaj, Shalini, i Yashwant Buke. "Computational Fluid Dynamics Analysis of A Turbocharger System". International Journal of Scientific Research 3, nr 5 (1.06.2012): 161–64. http://dx.doi.org/10.15373/22778179/may2014/49.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
13

Lin, C. T., J. K. Kuo i T. H. Yen. "Quantum Fluid Dynamics and Quantum Computational Fluid Dynamics". Journal of Computational and Theoretical Nanoscience 6, nr 5 (1.05.2009): 1090–108. http://dx.doi.org/10.1166/jctn.2009.1149.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

C., Mohan Raj. "Analysis of Various Automotive Mufflers: Computational Fluid Dynamics Approach". Revista Gestão Inovação e Tecnologias 11, nr 4 (10.07.2021): 1339–48. http://dx.doi.org/10.47059/revistageintec.v11i4.2191.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Drikakis, Dimitris, Michael Frank i Gavin Tabor. "Multiscale Computational Fluid Dynamics". Energies 12, nr 17 (25.08.2019): 3272. http://dx.doi.org/10.3390/en12173272.

Pełny tekst źródła
Streszczenie:
Computational Fluid Dynamics (CFD) has numerous applications in the field of energy research, in modelling the basic physics of combustion, multiphase flow and heat transfer; and in the simulation of mechanical devices such as turbines, wind wave and tidal devices, and other devices for energy generation. With the constant increase in available computing power, the fidelity and accuracy of CFD simulations have constantly improved, and the technique is now an integral part of research and development. In the past few years, the development of multiscale methods has emerged as a topic of intensive research. The variable scales may be associated with scales of turbulence, or other physical processes which operate across a range of different scales, and often lead to spatial and temporal scales crossing the boundaries of continuum and molecular mechanics. In this paper, we present a short review of multiscale CFD frameworks with potential applications to energy problems.
Style APA, Harvard, Vancouver, ISO itp.
16

Norman, Michael L., David A. Clarke i James M. Stone. "Computational Astrophysical Fluid Dynamics". Computers in Physics 5, nr 2 (1991): 138. http://dx.doi.org/10.1063/1.4822976.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

Bell, John B., Alejandro L. Garcia i Sarah A. Williams. "Computational fluctuating fluid dynamics". ESAIM: Mathematical Modelling and Numerical Analysis 44, nr 5 (26.08.2010): 1085–105. http://dx.doi.org/10.1051/m2an/2010053.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Schierholz, W. F., i N. Gilbert. "Computational Fluid Dynamics (CFD)". Chemie Ingenieur Technik 75, nr 10 (15.10.2003): 1412–14. http://dx.doi.org/10.1002/cite.200303306.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Kim, Youngho, i Sangho Yun. "Fluid Dynamics in an Anatomically Correct Total Cavopulmonary Connection : Flow Visualizations and Computational Fluid Dynamics(Cardiovascular Mechanics)". Proceedings of the Asian Pacific Conference on Biomechanics : emerging science and technology in biomechanics 2004.1 (2004): 57–58. http://dx.doi.org/10.1299/jsmeapbio.2004.1.57.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
20

Schneider, Kai, i Oleg V. Vasilyev. "Wavelet Methods in Computational Fluid Dynamics". Annual Review of Fluid Mechanics 42, nr 1 (styczeń 2010): 473–503. http://dx.doi.org/10.1146/annurev-fluid-121108-145637.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Teodosiu, Cătălin, Viorel Ilie i Raluca Teodosiu. "Condensation Model for Application of Computational Fluid Dynamics in Buildings". International Journal of Materials, Mechanics and Manufacturing 3, nr 2 (2015): 129–33. http://dx.doi.org/10.7763/ijmmm.2015.v3.181.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Subaschandar, N. "Flow Mixing Optimisation inside a Manifold using Computational Fluid Dynamics". Journal of Advanced Research in Applied Mechanics & Computational Fluid Dynamics 5, nr 3&4 (23.01.2019): 7–14. http://dx.doi.org/10.24321/2349.7661.201802.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Murti, Vishav, i Esar Ahmad. "Wind Effects on Bridge Deck: A Computational Fluid Dynamics Study". International Journal of Science and Research (IJSR) 12, nr 9 (5.09.2023): 1056–59. http://dx.doi.org/10.21275/sr23905111754.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Aksenov, Andrey A. "FlowVision: Industrial computational fluid dynamics". Computer Research and Modeling 9, nr 1 (luty 2017): 5–20. http://dx.doi.org/10.20537/2076-7633-2017-9-5-20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Barman, Purna Chandra. "Introduction to Computational Fluid Dynamics". International Journal of Information Science and Computing 3, nr 2 (2016): 117. http://dx.doi.org/10.5958/2454-9533.2016.00014.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
26

Mehta, Unmeel B. "Credible Computational Fluid Dynamics Simulations". AIAA Journal 36, nr 5 (maj 1998): 665–67. http://dx.doi.org/10.2514/2.431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
27

SATOMURA, Takehiko. "Computational Fluid Dynamics in Meteorology". Wind Engineers, JAWE 1994, nr 60 (1994): 41–55. http://dx.doi.org/10.5359/jawe.1994.60_41.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
28

Chen, Goong, Qingang Xiong, Phillip J. Morris, Eric G. Paterson, Alexey Sergeev i Yi-Ching Wang. "OpenFOAM for Computational Fluid Dynamics". Notices of the American Mathematical Society 61, nr 4 (1.04.2014): 354. http://dx.doi.org/10.1090/noti1095.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Wiwatanapataphee, Benchawan, Yonghong Wu, I. Ming Tang i Shaoyong Lai. "Fluid Dynamics and Computational Engineering". Mathematical Problems in Engineering 2014 (2014): 1–3. http://dx.doi.org/10.1155/2014/649058.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Wendt, John, Marc Bourzutschky, A. John Mallinckrodt i Susan McKay. "Computational Fluid Dynamics: An Introduction". Computers in Physics 7, nr 5 (1993): 542. http://dx.doi.org/10.1063/1.4823215.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Fisher, E. H., i N. Rhodes. "Uncertainty in Computational Fluid Dynamics". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 209, nr 2 (maj 1995): 155–58. http://dx.doi.org/10.1243/pime_proc_1995_209_026_02.

Pełny tekst źródła
Streszczenie:
The Fifth Joint Engineering and Physical Sciences Research Council and Institution of Mechanical Engineers Expert Meeting was held in Bournemouth on 27-29 November 1994. The Fifth Joint Engineering and Physical Sciences Research Council and Institution of Mechanical Engineers Expert Meeting was held in Bournemouth on 27–29 November 1994.
Style APA, Harvard, Vancouver, ISO itp.
32

Fisher, E. H., i N. Rhodes. "Uncertainty in Computational Fluid Dynamics". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 210, nr 1 (styczeń 1996): 91–94. http://dx.doi.org/10.1243/pime_proc_1996_210_173_02.

Pełny tekst źródła
Streszczenie:
The Annual EPSRC/IMechE Expert Meeting brought together some 44 experts to consider sources of uncertainty in computational fluid dynamics (CFD). Presentations and discussions covered modelling, numerical solution techniques, boundary conditions, evaluation protocols and QA (quality assurance) procedures. The principal conclusions to emerge were: (a) the need for additional collaborative validation studies; (b) the desirability of introducing appropriate QA procedures, possibly based on the CFD Community Club initiative; (c) the need for additional postgraduate training, possibly based on the IGDS principle; (d) the value of continuing work in modelling and error estimation techniques for numerical schemes.
Style APA, Harvard, Vancouver, ISO itp.
33

Lomax, H., TH Pulliam, DW Zingg i TA Kowalewski. "Fundamentals of Computational Fluid Dynamics". Applied Mechanics Reviews 55, nr 4 (2002): B61. http://dx.doi.org/10.1115/1.1483340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Paul, P. "Computational Fluid Dynamics in Combustion". Defence Science Journal 60, nr 6 (20.11.2010): 577–82. http://dx.doi.org/10.14429/dsj.60.600.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

Li, Sheng S. "Book review: Computational Fluid Dynamics". Canadian Journal of Civil Engineering 29, nr 6 (1.12.2002): 919–20. http://dx.doi.org/10.1139/l02-090.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Vassberg, John. "Expectations for computational fluid dynamics". International Journal of Computational Fluid Dynamics 19, nr 8 (listopad 2005): 549–58. http://dx.doi.org/10.1080/10618560500508375.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Ueki, Heihachi, Toshiaki Yokoi, Hiroko Fujii, Atsushi Kunimatsu, Kazuhiro Hiwada i Tsunemi Takahashi. "Computational Fluid Dynamics for Entertainment". Proceedings of The Computational Mechanics Conference 2002.15 (2002): 525–26. http://dx.doi.org/10.1299/jsmecmd.2002.15.525.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
38

Bhasker, C. "Computational techniques for fluid dynamics". Finite Elements in Analysis and Design 9, nr 1 (kwiecień 1991): 87–88. http://dx.doi.org/10.1016/0168-874x(91)90021-p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Bar-Yoseph, Pinhas Z. "Computational fluid dynamics review 1995". International Journal of Multiphase Flow 23, nr 5 (wrzesień 1997): 1003–4. http://dx.doi.org/10.1016/s0301-9322(97)80002-x.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Mehta, Unmeel B. "Credible computational fluid dynamics simulations". AIAA Journal 36 (styczeń 1998): 665–67. http://dx.doi.org/10.2514/3.13878.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Dhotre, Mahesh T., Nandkishor Krishnarao Nere, Sreepriya Vedantam i Mandar Tabib. "Advances in Computational Fluid Dynamics". International Journal of Chemical Engineering 2013 (2013): 1–2. http://dx.doi.org/10.1155/2013/917373.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

NAKAMURA, Tadao, i Hisaki DAIGUJI. "Computational Fluid Dynamics in Supercomputing". Journal of the Society of Mechanical Engineers 94, nr 866 (1991): 40–45. http://dx.doi.org/10.1299/jsmemag.94.866_40.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Thornber, Ben. "Computational fluid dynamics for engineers". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 227, nr 12 (11.11.2013): 2002. http://dx.doi.org/10.1177/0954410013478712.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

Ferziger, Joel H., Milovan Peric i Anthony Leonard. "Computational Methods for Fluid Dynamics". Physics Today 50, nr 3 (marzec 1997): 80–84. http://dx.doi.org/10.1063/1.881751.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Fletcher, D. F. "Computational techniques for fluid dynamics". Computer Physics Communications 70, nr 1 (maj 1992): 221. http://dx.doi.org/10.1016/0010-4655(92)90103-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Ranade, Vivek V., i Vishnu Pareek. "Guest editorial: computational fluid dynamics". Asia-Pacific Journal of Chemical Engineering 3, nr 2 (marzec 2008): 95–96. http://dx.doi.org/10.1002/apj.130.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

TAKAHIRA, Hiroyuki. "Computational Fluid Dynamics for Cavitaiton Bubble Dynamics". Proceedings of the Fluids engineering conference 2004 (2004): 4. http://dx.doi.org/10.1299/jsmefed.2004.4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

ZHANG, Nan, Zhongning SUN i Ming DING. "ICONE23-1895 COMPUTATIONAL FLUID DYNAMICS SIMULATIONS OF FLUID FLOW IN RANDOM PACKED BED WITH SPHERES". Proceedings of the International Conference on Nuclear Engineering (ICONE) 2015.23 (2015): _ICONE23–1—_ICONE23–1. http://dx.doi.org/10.1299/jsmeicone.2015.23._icone23-1_425.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Bayatian, Majid, Mohammad Reza Ashouri i Rouhallah Mahmoudkhani. "Flow Behavior Simulation with Computational Fluid Dynamics in Spray Tower Scrubber". International Journal of Environmental Science and Development 7, nr 3 (2016): 181–84. http://dx.doi.org/10.7763/ijesd.2016.v7.764.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Kochkov, Dmitrii, Jamie A. Smith, Ayya Alieva, Qing Wang, Michael P. Brenner i Stephan Hoyer. "Machine learning–accelerated computational fluid dynamics". Proceedings of the National Academy of Sciences 118, nr 21 (18.05.2021): e2101784118. http://dx.doi.org/10.1073/pnas.2101784118.

Pełny tekst źródła
Streszczenie:
Numerical simulation of fluids plays an essential role in modeling many physical phenomena, such as weather, climate, aerodynamics, and plasma physics. Fluids are well described by the Navier–Stokes equations, but solving these equations at scale remains daunting, limited by the computational cost of resolving the smallest spatiotemporal features. This leads to unfavorable trade-offs between accuracy and tractability. Here we use end-to-end deep learning to improve approximations inside computational fluid dynamics for modeling two-dimensional turbulent flows. For both direct numerical simulation of turbulence and large-eddy simulation, our results are as accurate as baseline solvers with 8 to 10× finer resolution in each spatial dimension, resulting in 40- to 80-fold computational speedups. Our method remains stable during long simulations and generalizes to forcing functions and Reynolds numbers outside of the flows where it is trained, in contrast to black-box machine-learning approaches. Our approach exemplifies how scientific computing can leverage machine learning and hardware accelerators to improve simulations without sacrificing accuracy or generalization.
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii