Gotowa bibliografia na temat „Computational Condensed Matter Physics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Computational Condensed Matter Physics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Computational Condensed Matter Physics"
Godwal, B. K. "Computational condensed matter physics". Bulletin of Materials Science 22, nr 5 (sierpień 1999): 877–84. http://dx.doi.org/10.1007/bf02745548.
Pełny tekst źródłaStephen, David T., Hendrik Poulsen Nautrup, Juani Bermejo-Vega, Jens Eisert i Robert Raussendorf. "Subsystem symmetries, quantum cellular automata, and computational phases of quantum matter". Quantum 3 (20.05.2019): 142. http://dx.doi.org/10.22331/q-2019-05-20-142.
Pełny tekst źródłaMcClintock, Peter V. E. "Experimental and Computational Techniques in Soft Condensed Matter Physics, edited by Jeffrey Olafsen". Contemporary Physics 52, nr 5 (wrzesień 2011): 486. http://dx.doi.org/10.1080/00107514.2011.580058.
Pełny tekst źródłaKarney, Charles F. F. "Modern computational techniques in plasma physics". Physics of Plasmas 5, nr 5 (maj 1998): 1632–35. http://dx.doi.org/10.1063/1.872831.
Pełny tekst źródłaSchultz, D. R., P. S. Krstic, T. Minami, M. S. Pindzola, F. J. Robicheaux, J. P. Colgan, S. D. Loch i in. "Computational atomic physics for plasma edge modeling". Contributions to Plasma Physics 44, nr 13 (kwiecień 2004): 247–51. http://dx.doi.org/10.1002/ctpp.200410036.
Pełny tekst źródłaJanatipour, Najmeh, Zabiollah Mahdavifar, Siamak Noorizadeh i Fazel Shojaei. "Modifying the electronic and geometrical properties of mono/bi-layer graphite-like BC2N via alkali metal (Li, Na) adsorption and intercalation: computational approach". New Journal of Chemistry 43, nr 33 (2019): 13122–33. http://dx.doi.org/10.1039/c9nj02260k.
Pełny tekst źródłaProbert, Matt. "Symmetry and Condensed Matter Physics – A Computational Approach, by M. El-Batanouny and F. Wooten". Contemporary Physics 51, nr 5 (wrzesień 2010): 457–58. http://dx.doi.org/10.1080/00107510903395937.
Pełny tekst źródłaBINDER, K. "LARGE-SCALE SIMULATIONS IN CONDENSED MATTER PHYSICS —THE NEED FOR A TERAFLOP COMPUTER". International Journal of Modern Physics C 03, nr 03 (czerwiec 1992): 565–81. http://dx.doi.org/10.1142/s0129183192000373.
Pełny tekst źródłaPursky, O. I., T. V. Dubovyk, V. O. Babenko, V. F. Gamaliy, R. A. Rasulov i R. P. Romanenko. "Computational method for studying the thermal conductivity of molecular crystals in the course of condensed matter physics". Journal of Physics: Conference Series 1840, nr 1 (1.03.2021): 012015. http://dx.doi.org/10.1088/1742-6596/1840/1/012015.
Pełny tekst źródłaSmit, Berend. "Computational physics in petrochemical industry". Physica Scripta T66 (1.01.1996): 80–84. http://dx.doi.org/10.1088/0031-8949/1996/t66/010.
Pełny tekst źródłaRozprawy doktorskie na temat "Computational Condensed Matter Physics"
Arias, Tomas A. "New analytic and computational techniques for finite temperature condensed matter systems". Thesis, Massachusetts Institute of Technology, 1992. http://hdl.handle.net/1721.1/13158.
Pełny tekst źródłaDarmawan, Andrew. "Quantum computational phases of matter". Thesis, The University of Sydney, 2014. http://hdl.handle.net/2123/11640.
Pełny tekst źródłaVarner, Samuel John. "Experimental and computational techniques in carbon-13 NMR". W&M ScholarWorks, 1999. https://scholarworks.wm.edu/etd/1539623952.
Pełny tekst źródłaMatsuda, Takehisa. "Computational proposal for locating local defects in superconducting tapes". California State University, Long Beach, 2013.
Znajdź pełny tekst źródłaGiomi, Luca. "Unordinary order a theoretical, computational and experimental investigation of crystalline order in curved space /". Related electronic resource: Current Research at SU : database of SU dissertations, recent titles available full text, 2009. http://wwwlib.umi.com/cr/syr/main.
Pełny tekst źródłaPrentice, Joseph Charles Alfred. "Investigating anharmonic effects in condensed matter systems". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275467.
Pełny tekst źródłaGarcia, Alberto J. "Parameter Dependence of Pair Correlations in Clean Superconducting-Magnetic Proximity Systems". Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841350.
Pełny tekst źródłaCooper pairs are known to tunnel through a barrier between superconductors in a Josephson junction. The spin states of the pairs can be a mixture of singlet and triplet states when the barrier is an inhomogeneous magnetic material. The purpose of this thesis is to better understand the behavior of pair correlations in the ballistic regime for different magnetic configurations and varying physical parameters. We use a tight-binding Hamiltonian to describe the system and consider singlet-pair conventional superconductors. Using the Bogoliubov-Valatin transformation, we derive the Bogoliubov-de Gennes equations and numerically solve the associated eigenvalue problem. Pair correlations in the magnetic Josephson junction are obtained from the Green's function formalism for a superconductor. This formalism is applied to Josephson junctions composed of discrete and continuous magnetic materials. The differences between representing pair correlations in the time and frequency domain are discussed, as well as the advantages of describing the Gor'kov functions on a log scale rather than the commonly used linear scale, and in a rotating basis as opposed to a static basis. Furthermore, the effects of parameters such as ferromagnetic width, magnetization strength, and band filling will be investigated. Lastly, we compare results in the clean limit with known results in the diffusive regime.
Stefferson, Michael W. "Dynamics of Crowded and Active Biological Systems". Thesis, University of Colorado at Boulder, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10823834.
Pełny tekst źródłaInteractions between particles and their environment can alter the dynamics of biological systems. In crowded media like the cell, interactions with obstacles can introduce anomalous subdiffusion. Active matter systems, e.g. , bacterial swarms, are nonequilibrium fluids where interparticle interactions and activity cause collective motion and dynamical phases. In this thesis, I discuss my advances in the fields of crowded media and active matter. For crowded media, I studied the effects of soft obstacles and bound mobility on tracer diffusion using a lattice Monte Carlo model. I characterized how bound motion can minimize the effects of hindered anomalous diffusion and obstacle percolation, which has implications for protein movement and interactions in cells. I extended the analysis of binding and bound motion to study the effects of transport across biofilters like the nuclear pore complex (NPC). Using a minimal model, I made predictions on the selectivity of the NPC in terms of physical parameters. Finally, I looked at active matter systems. Using dynamical density functional theory, I studied the temporal evolution of a self-propelled needle system. I mapped out a dynamical phase diagram and discuss the connection between a banding instability and microscopic interactions.
Kremeyer, Kevin P. 1968. "Experimental and computational investigations of binary solidification". Diss., The University of Arizona, 1997. http://hdl.handle.net/10150/289267.
Pełny tekst źródłaHutzel, William D. "Particle-Hole Symmetry Breaking in the Fractional Quantum Hall Effect at nu = 5/2". Thesis, California State University, Long Beach, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10841528.
Pełny tekst źródłaThe fractional quantum Hall effect (FQHE) in the half-filled second Landau level (filling factor ν = 5/2) offers new insights into the physics of exotic emergent quasi-particles. The FQHE is due to the collective interactions of electrons confined to two-dimensions, cooled to sub-Kelvin temperatures, and subjected to a strong perpendicular magnetic field. Under these conditions a quantum liquid forms displaying quantized plateaus in the Hall resistance and chiral edge flow. The leading candidate description for the FQHE at 5/2 is provided by the Moore-Read Pfaffian state which supports non-Abelian anyonic low-energy excitations with potential applications in fault-tolerant quantum computation schemes. The Moore-Read Pfaffian is the exact zero-energy ground state of a particular three-body Hamiltonian and explicitly breaks particle-hole symmetry. In this thesis we investigate the role of two and three body interaction terms in the Hamiltonian and the role of particle hole symmetry (PHS) breaking at ν = 5/2. We start with a PHS two body Hamiltonian (H 2) that produces an exact ground state that is nearly identical with the Moore-Read Pfaffian and construct a Hamiltonian H(α) = (1 – α)H3 + α H 2 that tunes continuously between H3 and H2. We find that the ground states, and low-energy excitations, of H2 and H3 are in one-to-one correspondence and remain adiabatically connected indicating they are part of the same universality class and describe the same physics in the thermodynamic limit. In addition, evidently three body PHS breaking interactions are not a crucial ingredient to realize the FQHE at 5/2 and the non-Abelian quasiparticle excitations.
Książki na temat "Computational Condensed Matter Physics"
Miyashita, Seiji, Masatoshi Imada i Hajime Takayama, red. Computational Approaches in Condensed-Matter Physics. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84821-6.
Pełny tekst źródłaExperimental and computational techniques in soft condensed matter physics. New York: Cambridge University Press, 2010.
Znajdź pełny tekst źródłaF, Wooten, red. Symmetry and condensed matter physics: A computational approach. New York: Cambridge University Press, 2008.
Znajdź pełny tekst źródłaOlafsen, Jeffrey, red. Experimental and Computational Techniques in Soft Condensed Matter Physics. Cambridge: Cambridge University Press, 2009. http://dx.doi.org/10.1017/cbo9780511760549.
Pełny tekst źródłaA, Zhuravlëv V., red. Physics of dendrites: Computational experiments. Singapore: World Scientific, 1994.
Znajdź pełny tekst źródłaMonastyrsky, Michael. Topology of Gauge Fields and Condensed Matter. Boston, MA: Springer US, 1993.
Znajdź pełny tekst źródłaLuciano, Reatto, i Manghi Franca, red. Progress in computational physics of matter: Methods, software and applications. Singapore: World Scientific, 1995.
Znajdź pełny tekst źródłaThijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.
Znajdź pełny tekst źródłaThijssen, J. M. Computational physics. Cambridge: Cambridge University Press, 1999.
Znajdź pełny tekst źródła1940-, Kitagawa Hiroshi, Aihara T. 1964- i Kawazoe Y. 1947-, red. Mesoscopic dynamics of fracture: Computational materials design. Berlin: New York, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "Computational Condensed Matter Physics"
Van Hieu, Nguyen. "Functional Integral Techniques in Condensed Matter Physics". W Computational Approaches to Novel Condensed Matter Systems, 191–233. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4757-9791-6_10.
Pełny tekst źródłaPowell, Ben J. "Introduction to Effective Low-Energy Hamiltonians in Condensed Matter Physics and Chemistry". W Computational Methods for Large Systems, 309–66. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9780470930779.ch10.
Pełny tekst źródłaLaumann, C. R., R. Moessner, A. Scardicchio i S. L. Sondhi. "Statistical Mechanics of Classical and Quantum Computational Complexity". W Modern Theories of Many-Particle Systems in Condensed Matter Physics, 295–332. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-10449-7_7.
Pełny tekst źródłaHeine, Volker. "Computation of Electronic Structure: Its Role in the Development of Solid State Physics". W Electronic Structure, Dynamics, and Quantum Structural Properties of Condensed Matter, 1–5. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4757-0899-8_1.
Pełny tekst źródłaBalkanski, Minko. "Condensed Matter Physics". W Encyclopedia of Sciences and Religions, 458–64. Dordrecht: Springer Netherlands, 2013. http://dx.doi.org/10.1007/978-1-4020-8265-8_9.
Pełny tekst źródłaChaikin, P. M., M. Ya Azbel i P. Bak. "Magnetic Field Induced Transitions in Organic Conductors and Gaps in the Rings of Saturn". W Condensed Matter Physics, 1–15. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_1.
Pełny tekst źródłaSchuller, Ivan K., i M. Lagos. "Polarons and Subsurface Bonding". W Condensed Matter Physics, 110–15. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_10.
Pełny tekst źródłaCohen, Marvin L. "New Directions in Calculating Electron-Phonon Interactions". W Condensed Matter Physics, 116–22. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_11.
Pełny tekst źródłaSchrieffer, J. Robert. "The Electron-Phonon Cornucopia". W Condensed Matter Physics, 123–28. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_12.
Pełny tekst źródłaShoenberg, D. "Magnetic Interaction in a 2-D Electron Gas". W Condensed Matter Physics, 129–41. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4612-4772-2_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Computational Condensed Matter Physics"
Ravindran, Reju, Sanoj P. Suresh, Sabarishwaran Rajasekar, Basithrahman Abbas, Oblisamy Lakshminarayanan, Shweata Swaminath Melkunde, Shyam Shashikant Shukla i Vaishnavi Anil Furmalkar. "Computational investigation of aerodynamics characteristics over GNVR profile". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0130973.
Pełny tekst źródłaIrfan, Abd Rahim, M. Z. M. Zarhamdy, Saad Mohd Sazli, Muhamad Nur Amni, N. A. Shuaib i A. Azlida. "Computational study on thermoacoustic heat engine for proposing a new method renewable technique". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118189.
Pełny tekst źródłaHaty, Amarjit, Rajendra K. Ray i Atendra Kumar. "A computational study of forced convection from rotating circular cylinder heated with time-periodic pulsating temperature". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0127807.
Pełny tekst źródłaRadhwan, H., Z. Shayfull, M. R. Farizuan, M. S. M. Effendi i A. R. Irfan. "Analysis particle trajectory and air flow on hopper for swiftlet feeding machine using computational fluid dynamics (CFD)". W APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5118166.
Pełny tekst źródłaSachdeva, Ritika, Prabhjot Kaur, V. P. Singh i G. S. S. Saini. "Computational study of frontier orbitals, moments, chemical reactivity and thermodynamic parameters of sildenafil". W INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2015): Proceeding of International Conference on Condensed Matter and Applied Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4946347.
Pełny tekst źródłaKumar, Ajith, i Vincent Mathew. "Computational study of proton acceleration from the laser irradiated metal substrate". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033186.
Pełny tekst źródłaTiwari, Aditya, Brijesh Kumar i Ambrish Kumar Srivastava. "Computational study on 8-quinolinolato-alkali, an electron transporting material for OLED devices". W 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0005773.
Pełny tekst źródłaGupta, Shivani, Vinay Shukla, Sarvesh Kumar Gupta, B. K. Pandey i Abhishek Kumar Gupta. "Computational studies of PEO3-NaClO4 based solid polymer electrolyte for Na-ion batteries". W 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001951.
Pełny tekst źródłaDewangan, Satish Kumar. "Review of computational fluid dynamics (CFD) researches on nano fluid flow through micro channel". W 2ND INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC 2017). Author(s), 2018. http://dx.doi.org/10.1063/1.5033211.
Pełny tekst źródłaSurbhi, Sarvendra Kumar i G. N. Pandey. "Experimental and computational (ab initio and DFT) analysis of vibrational spectra of 2,6-dimethyl-4-nitrophenol". W 3RD INTERNATIONAL CONFERENCE ON CONDENSED MATTER AND APPLIED PHYSICS (ICC-2019). AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0002433.
Pełny tekst źródłaRaporty organizacyjne na temat "Computational Condensed Matter Physics"
Barbee, T. W., M. P. Surh i L. X. Benedict. Computational Theory of Warm Condensed Matter. Office of Scientific and Technical Information (OSTI), luty 2001. http://dx.doi.org/10.2172/15006179.
Pełny tekst źródłaMele, E. J. Condensed matter physics at surfaces and interfaces of solids. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/5524488.
Pełny tekst źródłaMaynard, Julian D. Innovative Acoustic Techniques for Studying New Materials and New Developments in Condensed Matter Physics. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2000. http://dx.doi.org/10.21236/ada380708.
Pełny tekst źródłaFradkin, Eduardo, Juan Maldacena, Lali Chatterjee i James W. Davenport. BES-HEP Connections: Common Problems in Condensed Matter and High Energy Physics, Round Table Discussion. Office of Scientific and Technical Information (OSTI), luty 2015. http://dx.doi.org/10.2172/1275474.
Pełny tekst źródłaStocks, G. M. (The use of parallel computers and multiple scattering Green function methods in condensed matter physics). Office of Scientific and Technical Information (OSTI), listopad 1990. http://dx.doi.org/10.2172/6352675.
Pełny tekst źródłaCollins, G. Physics and Chemistry of the Interiors of Large Planets: A new generation of condensed matter using NIF. Office of Scientific and Technical Information (OSTI), kwiecień 2009. http://dx.doi.org/10.2172/1113445.
Pełny tekst źródłaMele, E. J. Condensed matter physics at surfaces and interfaces of solids. Progress report, February 1, 1991--January 31, 1992. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/10131186.
Pełny tekst źródłaSolomon, Allan I., Roy Pike, David Sherrington, Brian Rainford, Raymond Bishop, Colin Gough, Mario Rasetti i Mikael Ciftan. Round Table Workshop on the Frontiers of Condensed Matter Physics Held in Broomcroft Hall, Manchester on 24-25 September 1990. Fort Belvoir, VA: Defense Technical Information Center, grudzień 1990. http://dx.doi.org/10.21236/ada250357.
Pełny tekst źródłaUlloa, S. E. Electronic states in systems of reduced dimensionality. [Dept. of Physics and Astronomy and Condensed Matter and Surface Sciences Program, Ohio Univ. , Athens, Ohio]. Office of Scientific and Technical Information (OSTI), maj 1993. http://dx.doi.org/10.2172/6425342.
Pełny tekst źródła