Gotowa bibliografia na temat „Computational Chemistry Method”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Computational Chemistry Method”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Computational Chemistry Method"
Zhou, Lei, Wanhui Zhao i Haiqiao Wei. "Effect of improved accelerating method on efficient chemistry calculations in diesel engine". International Journal of Engine Research 19, nr 8 (18.09.2017): 839–53. http://dx.doi.org/10.1177/1468087417731438.
Pełny tekst źródłaLam, S. H. "REDUCED CHEMISTRY MODELING IN REACTING FLOWS". International Journal of Modern Physics C 05, nr 02 (kwiecień 1994): 225–27. http://dx.doi.org/10.1142/s0129183194000209.
Pełny tekst źródłaAristoff, David. "An ergodic theorem for the weighted ensemble method". Journal of Applied Probability 59, nr 1 (18.01.2022): 152–66. http://dx.doi.org/10.1017/jpr.2021.38.
Pełny tekst źródłaKhadka, Deba Bahadur. "Development of Computational Research Methods and Application in Chemistry". NUTA Journal 5, nr 1-2 (31.12.2018): 72–78. http://dx.doi.org/10.3126/nutaj.v5i1-2.23460.
Pełny tekst źródłaLiang, Long, Song-Charng Kong, Chulhwa Jung i Rolf D. Reitz. "Development of a Semi-implicit Solver for Detailed Chemistry in Internal Combustion Engine Simulations". Journal of Engineering for Gas Turbines and Power 129, nr 1 (28.02.2006): 271–78. http://dx.doi.org/10.1115/1.2204979.
Pełny tekst źródłaPurwiandono, Gani. "Development of Computational-based Visualization Method in Physical Chemistry Practical Course". International Journal of Science and Applied Science: Conference Series 2, nr 1 (10.12.2017): 114. http://dx.doi.org/10.20961/ijsascs.v2i1.16692.
Pełny tekst źródłaZhang, Ruiqing. "Analysis of mathematical methods and principles of molecular dynamics and monte carlo method". Theoretical and Natural Science 5, nr 1 (25.05.2023): 395–401. http://dx.doi.org/10.54254/2753-8818/5/20230252.
Pełny tekst źródłaFilho, Eloi Alves da Silva, Fabricio Uliana, Stêner Romanel Ambrozio, Cleverton Oliveira, Renan Martin i Arlan da Silva Gonçalves. "COMPUTATIONAL STUDY OF ORGANIC COMPOUNDS – AN APPLICATION FOR LEARNING IN CHEMISTRY". Revista Ifes Ciência 5, nr 1 (22.11.2019): 257–66. http://dx.doi.org/10.36524/ric.v5i1.293.
Pełny tekst źródłaPrakoso, Nurcahyo Iman, Lukman Hakim i Nuri Hidayati. "Molecular Modeling of An Analog Of Curcumin Compounds Pentagamavunon-0 (PGV-0) And Pentagamavunon-1 (PGV-1) Through Computational Chemistry Methods Ab-Initio HF/4-31G". Chemical 3, nr 1 (31.12.2017): 28–39. http://dx.doi.org/10.20885/ijcr.vol2.iss1.art4.
Pełny tekst źródłaAithal, S. M. "Charged Species Concentration in Combusting Mixtures Using Equilibrium Chemistry". Journal of Combustion 2018 (4.10.2018): 1–11. http://dx.doi.org/10.1155/2018/9047698.
Pełny tekst źródłaRozprawy doktorskie na temat "Computational Chemistry Method"
Fechner, Uli. "Development and implementation of a fast de novo design method /". Aachen : Shaker, 2008. http://d-nb.info/988277492/04.
Pełny tekst źródłaBinkley, Meisha A. "Aryl Acetate Phase Transfer Catalysis: Method and Computation Studies". BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2680.
Pełny tekst źródłaKondepudi, Karthik Chalam. "Computational prediction of enhanced solubility of poorly aqueous soluble drugs prepared by hot melt method". Scholarly Commons, 2015. https://scholarlycommons.pacific.edu/uop_etds/267.
Pełny tekst źródłaVisciarelli, Michele. "Modeling transport properties of molecular devices by a novel computational approach". Doctoral thesis, Scuola Normale Superiore, 2014. http://hdl.handle.net/11384/85807.
Pełny tekst źródłaBatoon, Patrick Henry M. "Thermochemical differences in lysine and lysine-homolog containing oligopeptides: Determination of basicity and gas-phase structure through mass spectrometry, infrared spectroscopy, and computational chemistry". Scholarly Commons, 2016. https://scholarlycommons.pacific.edu/uop_etds/127.
Pełny tekst źródłaTao, Peng. "Computational studies to understand molecular regulation of the TRPC6 calcium channel, the mechanism of purine biosynthesis, and the folding of azobenzene oligomers". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1166718985.
Pełny tekst źródłaSteiger, Don. "Numerical n-body methods in computational chemistry /". free to MU campus, to others for purchase, 1998. http://wwwlib.umi.com/cr/mo/fullcit?p9924930.
Pełny tekst źródłaDinescu, Adriana. "Metals in Chemistry and Biology: Computational Chemistry Studies". Thesis, University of North Texas, 2007. https://digital.library.unt.edu/ark:/67531/metadc3678/.
Pełny tekst źródłaMillan, Cabrera Reisel. "Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory". Doctoral thesis, Universitat Politècnica de València, 2021. http://hdl.handle.net/10251/161934.
Pełny tekst źródła[CA] En aquest treball estudiem dues reaccions catalítiques rellevants per a la indústria i la localització de l'anió fluorur en la zeolita RTH, sintetitzada al mig fluorur. El capítol 3 és el primer capítol de resultats, on s'estudia la reducció quimioselectiva del nitroestireno en les superfícies Ni(111), Co(111), Cu(111) i Pd(111). El mecanisme generalment acceptat d'aquesta reacció està basat en l'esquema proposat per Haver-hi en 1898, en el qual la reacció pot transcórrer per dues rutes, la directa i la de condensació. En aquest capítol explorem totes dues rutes, i observem que la ruptura dels enllaços N-O i la conseqüent formació d'enllaços metall-O està més afavorida que la formació d'enllaços N-H en les superfícies Ni(111) i Co(111), a causa del caràcter oxofílico de tots dos metalls. Les etapes més lentes involucren la formació d'enllaços N-H. En les superfícies de metalls nobles com Pt(111) i Pd(111) s'observa el comportament contrari. La superfície Cu(111) és un cas intermedi comparat amb els metalls nobles i no nobles. A més, el nitroestireno interactua amb els àtoms de Cu de la superfície sol a través de grup nitre, amb la qual cosa és un candidat ideal per a aconseguir selectivitats prop del 100%. No obstant això, la superfície Cu(111) no és capaç d'activar la molècula d'H2. En aquest sentit, proposem un catalitzador bimetàl·lic basat en Cu, dopat amb un altre metall capaç d'activar a l'H2, com ara el Pd o el Ni. En els capítols 4 i 5 hem estudiat la reducció catalítica selectiva dels òxids de nitrogen (SCR, en anglés) amb amoníac. Usant mètodes de DFT, hem trobat rutes per a l'oxidació de NO a NO2, nitrits i nitrats amb energies d'activació relativament baixes. També, hem trobat que la reducció de Cu2+ a Cu+ requereix la participació simultània de NO i NH3. Posteriorment, hem estudiat la influència del NH3 en aquest sistema amb mètodes de dinàmica molecular. El NH3 interacciona fortament amb el Cu+ de manera que dues molècules d'aquest gas són suficients per a trencar la coordinació del catió Cu+ amb els oxígens de l'anell 6r, i formar el complex lineal [Cu(NH3)2]+. A més, els cations Cu2+ poden ser estabilitzats fora de la xarxa mitjançant la formació del complex tetraamincobre(II). A causa de la presència dels cations Cu+ i Cu2+ coordinats a la xarxa de la zeolita, apareixen bandes a la regió entre 800-1000 cm-1 de l'espectre infraroig. L'anàlisi de les freqüències IR de diversos models amb Cu+ i Cu2+ coordinats a l'anell 6r, o formant complexos amb amoníac indica que quan els cations Cu+ i Cu2+ estan coordinats als oxígens de l'anell 6r apareixen vibracions entre 830 i 960 cm-1. Freqüències en aquesta zona també s'obtenen en els casos en què NO, NO2, O2 i combinacions de dues d'ells estan adsorbidos en Cu+ i Cu2+. No obstant això, quan els cations Cu+ i Cu2+ estan fora de l'anell (no hi ha enllaços entre els cations de coure i els oxígens de l'anell 6r) no s'obtenen vibracions d'IR en aquesta regió de l'espectre. Aquests resultats indiquen que amb el seguiment de l'espectre IR durant la reacció SCR és possible determinar si els cations Cu+ i Cu2+ estan coordinats o no a l'anell de 6r en les etapes d'oxidació i reducció. Finalment, hem simulat el desplaçament químic de 19F, δiso, en la zeolita sintetitzada RTH. L'anàlisi del δiso dels diferents models utilitzats ens ha permés reconéixer la simetria del material sintetitzat, el qual pertany al grup espacial P1 i la nova cel·la unitat ha sigut confirmada experimentalment per difracció de raigs X. Finalment, hem assignat el senyal experimental que apareix en l'espectre de 19F a -67.2 ppm, al F- localitzat en un lloc T2, el qual és al seu torn la posició més estable. A més, el senyal a -71.8 ppm s'ha assignat a l'anió F- localitzat en un lloc T4.
[EN] In this work, we have studied two heterogeneous catalytic reactions and the localization of the fluoride anion in the as-made RTH framework, synthesized in fluoride medium. The first results, included in chapter 3, correspond to the chemoselective reduction of nitrostyrene on different metal surfaces, i.e, Ni(111), Co(111), Cu(111) and Pd(111). Until very recently, the reduction of the nitro group was explained on the basis of the general mechanism proposed by Haber in 1898 where the reaction can follow two routes, the direct and condensation route. We have explored the relevant elementary steps of both routes and found that because of the oxophilic nature of Ni and Co, the steps involving the dissociation of N-O bonds and formation of metal-O bonds are significantly favored compared with the other steps on both metal surfaces. In addition, the most demanding steps in terms of energy involve the formation of N-H bonds. These findings are in contrast to those of noble metals such as Pt and Pd, where the opposite behavior is observed. The behavior of Cu(111) lies in between the aforementioned cases, and also no chemical bonds between the carbon atoms of the aromatic ring of nitrostyrene and the Cu(111) surface is formed. For this reason, it might be an ideal candidate to achieve nearly 100 % selectivity. However, the Cu(111) surface does not seem to activate the H2 molecule. In this regard, we propose a bimetallic Cu-based catalyst whose surface is doped with atoms of a H2-activating metal, such as Ni or Pd. On another matter, we have also investigated the selective catalytic reduction of nitrogen oxides (SCR-NOx) and the main results are presented in the following two chapters, 4 and 5. By using static DFT methods, we found pathways for the oxidation of NO to NO2, nitrites and nitrates with relatively low activation energies. We also found, in agreement with experimental reports, that the reduction of Cu2+ to Cu+ requires the simultaneous participation of NO and NH3. Later, molecular dynamics simulations allowed us to assess the influence of NH3. The strong interaction of NH3 with the Cu+ cation is evidenced by its ability to detach Cu+ from the zeolite framework and form the mobile linear complex [Cu(NH3)2]+. Cu+ is no longer coordinated to the zeolite framework in the presence of two NH3 molecules. This observation and the fact that the T-O-T vibrations of the framework produce bands in the 800-1000 cm-1 region of the IR spectrum when perturbed by the coordination of Cu+ and Cu2+ cations, indicate that bands in the 800-1000 cm-1 regions should be observed when both copper cations are bonded to the framework oxygens. Finally, we have also studied NMR properties of the as-made pure silica RTH framework, aiming at locating the compensating fluoride anion. The calculation of the 19F chemical shift in different T sites and comparison with the experimental NMR spectra shows that the as-made RTH belongs to the P-1 space group with 16 Si, 32 O atoms, one fluoride anion and one OSDA cation. These results have been confirmed experimentally by XRD. In addition, we have assigned the experimental signal of 19F at -67.2 ppm to the fluoride anion in a T2 site, which in turn is the most stable location found, and the signal of -71.8 ppm to a fluoride anion sitting in a T4 site.
My acknowledgements to “La Caixa foundation” for the financial support through “La Caixa−Severo Ochoa” International PhD Fellowships (call 2015), to the Spanish Supercomputing Network (RES), to the Centre de Càlcul de la Universitat de València, to the Flemish Supercomputer Center (VSC) of Ghent University for the computational resources and technical support, and to the Spanish Government through the MAT2017-82288-C2-1-P programme
Millan Cabrera, R. (2021). Computational study of heterogeneous catalytic systems. Kinetic and structural insights from Density Functional Theory [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/161934
TESIS
Bertolani, Steve James. "Computational Methods for Modeling Enzymes". Thesis, University of California, Davis, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10928544.
Pełny tekst źródłaEnzymes play a crucial role in modern biotechnology, industry, food processing and medical applications. Since their first discovered industrial use, man has attempted to discover new enzymes from Nature to catalyze different chemical reactions. In modern times, with the advent of computational methods, protein structure solutions, protein sequencing and DNA synthesis methods, we now have the tools to enable new approaches to rational enzyme engineering. With an enzyme structure in hand, a researcher may run an in silico experiment to sample different amino acids in the active site in order to identify new combinations which likely stabilize a transition-state-enzyme model. A suggested mutation can then be encoded into the desired enzyme gene, ordered, synthesized and tested. Although this truly astonishing feat of engineering and modern biotechnology allows the redesign of existing enzymes to acquire a new substrate specificity, it still requires a large amount of time, capital and technical capabilities.
Concurrently, while making strides in computational protein design, the cost of sequencing DNA plummeted after the turn of the century. With the reduced cost of sequencing, the number of sequences in public databases of naturally occurring proteins has grown exponentially. This new, large source of information can be utilized to enable rational enzyme design, as long as it can be coupled with accurate modeling of the protein sequences.
This work first describes a novel approach to reengineering enzymes (Genome Enzyme Orthologue Mining; GEO) that utilizes the vast amount of protein sequences in modern databases along with extensive computation modeling and achieves comparable results to the state-of-the-art rational enzyme design methods. Then, inspired by the success of this new method and aware of it's reliance on the accuracy of the protein models, we created a computational benchmark to both measure the accuracy of our models as well as improve it by encoding additional information about the structure, derived from mechanistic studies (Catalytic Geometry constraints; CG). Lastly, we use the improved accuracy method to automatically model hundreds of putative enzymes sequences and dock substrates into them to extract important features that are then used to inform experiments and design. This is used to reengineer a ribonucleotide reductase to catalyze a aldehyde deformylating oxygenase reaction.
These chapters advance the field of rational enzyme engineering, by providing a novel technique that may enable efficient routes to rationally design enzymes for reactions of interest. These chapters also advance the field of homology modeling, in the specific domain in which the researcher is modeling an enzyme with a known chemical reaction. Lastly, these chapters and techniques lead to an example which utilizes highly accurate computational models to create features which can help guide the rational design of enzyme catalysts.
Książki na temat "Computational Chemistry Method"
Eyert, Volker. The Augmented Spherical Wave Method: A Comprehensive Treatment. Wyd. 2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Znajdź pełny tekst źródłaWilson, Stephen, red. Methods in Computational Chemistry. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4615-7416-3.
Pełny tekst źródłaWilson, Stephen, red. Methods in Computational Chemistry. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-0711-2.
Pełny tekst źródłaWilson, Stephen, red. Methods in Computational Chemistry. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-1983-0.
Pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum, 1992.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum, 1988.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum, 1992.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum Press, 1987.
Znajdź pełny tekst źródła1950-, Wilson S., red. Methods in computational chemistry. New York: Plenum, 1989.
Znajdź pełny tekst źródła1950-, Evans Myron W., red. Computational methods in quantum chemistry. Singapore: World Scientific, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Computational Chemistry Method"
Onishi, Taku. "Hartree-Fock Method". W Quantum Computational Chemistry, 27–39. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5933-9_3.
Pełny tekst źródłaPrasad, Ram Yatan, i Pranita. "Hückel Molecular Orbital Theory/Method". W Computational Quantum Chemistry, 563–645. Wyd. 2. Second edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2021. http://dx.doi.org/10.1201/9781003133605-13.
Pełny tekst źródłaPoltev, Valeri. "Molecular Mechanics: Method and Applications". W Handbook of Computational Chemistry, 259–91. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-0711-5_9.
Pełny tekst źródłaGropen, Odd. "The Relativistic Effective Core Potential Method". W Methods in Computational Chemistry, 109–35. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-0711-2_3.
Pełny tekst źródłaNakajima, Takahito, i Yutaka Nakatsuka. "Relativistic Quantum Monte Carlo Method". W Practical Aspects of Computational Chemistry I, 293–317. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0919-5_10.
Pełny tekst źródłaLipkowski, Janusz, i Kinga Suwińska. "Molecular Modeling as an Auxiliary Method in Solving Crystal Structures Based on Diffraction Techniques". W Practical Aspects of Computational Chemistry, 241–54. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2687-3_11.
Pełny tekst źródłaPreiskorn, A., D. Frye, G. C. Lie i E. Clementi. "HYCOIN: Hylleraas Configuration Interaction Method Using Gaussian Functions". W Modem Techniques in Computational Chemistry: MOTECC-91, 535–97. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3032-5_13.
Pełny tekst źródłaParpia, F. A., i A. K. Mohanty. "A Relativistic Multiconfiguration Self-Consistent-Field Method for Atoms". W Modem Techniques in Computational Chemistry: MOTECC-91, 211–31. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3032-5_5.
Pełny tekst źródłaFrye, D., G. C. Lie, S. J. Chakravorty, A. Preiskorn i E. Clementi. "Hylleraas Configuration Interaction Method using Gaussian Functions". W Modern Techniques in Computational Chemistry: MOTECC™-89, 207–41. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-010-9057-5_5.
Pełny tekst źródłaGiannini, Samuele, Antoine Carof, Matthew Ellis, Orestis G. Ziogos i Jochen Blumberger. "Chapter 6. From Atomic Orbitals to Nano-scale Charge Transport with Mixed Quantum/Classical Non-adiabatic Dynamics: Method, Implementation and Application". W Theoretical and Computational Chemistry Series, 172–202. Cambridge: Royal Society of Chemistry, 2021. http://dx.doi.org/10.1039/9781839164668-00172.
Pełny tekst źródłaStreszczenia konferencji na temat "Computational Chemistry Method"
Yusuf, Muhammad, i Deby Elfrinasti Br Sitepu. "Computational calculation of acetalization of benzaldehyde using acid catalysts (HCl) with computational method (Ab-Initio)". W INTERNATIONAL SYMPOSIUM ON APPLIED CHEMISTRY (ISAC) 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4973182.
Pełny tekst źródłaGhosh, Indranil, M. S. H. Chowdhury, Suazlan Bin Mt Aznam i Shukranul Mawa. "New iterative method for solving chemistry problem". W INTERNATIONAL UZBEKISTAN-MALAYSIA CONFERENCE ON “COMPUTATIONAL MODELS AND TECHNOLOGIES (CMT2020)”: CMT2020. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0057585.
Pełny tekst źródłaUmeyama, Hideaki, Daisuke Takaya, Mayuko Takeda-Shitaka, Genki Terashi, Kazuhiko Kanou, Dong-Qing Wei i Xi-Jun Wang. "A New Docking and Screening Method Using a New Operator Based upon Bioinformatics". W THEORY AND APPLICATIONS OF COMPUTATIONAL CHEMISTRY—2008. AIP, 2009. http://dx.doi.org/10.1063/1.3108390.
Pełny tekst źródłaRao, Shrikanth, Christopher Rutland i Scott Fiveland. "Reduced Chemistry Modeling - A New Method for Identifying Reactions in Partial Equilibrium". W 16th AIAA Computational Fluid Dynamics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-3545.
Pełny tekst źródłaMoghimi waskasi, Morteza, i S. Hashemianzadeh. "Study of Coumarin NKX-2697 Dye for Photowater Spliltting by Computational Method". W The 14th International Electronic Conference on Synthetic Organic Chemistry. Basel, Switzerland: MDPI, 2010. http://dx.doi.org/10.3390/ecsoc-14-00415.
Pełny tekst źródłaCartier, A., M. T. C. Martins Costa i D. Rinaldi. "Computation of molecular electronic polarizabilities by a variational method at the CISD level". W The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47849.
Pełny tekst źródłaChen, Lu, i Francine Battaglia. "Computational Study Comparing Reduced Chemical Mechanisms With the PDF Method in Non-Premixed Flames". W ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-7543.
Pełny tekst źródłaJuang, Chwan-Young, i Shiow-Yau Jeng. "Splitting energies on π∗ anion states of 1,4-cyclohexadiene via exponent stabilization method". W The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47645.
Pełny tekst źródłaMouron, Ludovic, Jean-Jacques Legendre i Gérard S. Picard. "A new method for the structural modeling of disordered compounds. Application to molten salts". W The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47714.
Pełny tekst źródłaHorvath, D., D. Van Belle i S. J. Wodak. "Development and parametrization of a continuum solvent model based on the boundary element method". W The first European conference on computational chemistry (E.C.C.C.1). AIP, 1995. http://dx.doi.org/10.1063/1.47744.
Pełny tekst źródłaRaporty organizacyjne na temat "Computational Chemistry Method"
Millis, Andrew. Many Body Methods from Chemistry to Physics: Novel Computational Techniques for Materials-Specific Modelling: A Computational Materials Science and Chemistry Network. Office of Scientific and Technical Information (OSTI), listopad 2016. http://dx.doi.org/10.2172/1332662.
Pełny tekst źródła