Gotowa bibliografia na temat „Compressive phase retrieval”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Compressive phase retrieval”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Compressive phase retrieval"
Li, Yi, i Vasileios Nakos. "Sublinear-Time Algorithms for Compressive Phase Retrieval". IEEE Transactions on Information Theory 66, nr 11 (listopad 2020): 7302–10. http://dx.doi.org/10.1109/tit.2020.3020701.
Pełny tekst źródłaZhang, Liang, Gang Wang, Georgios B. Giannakis i Jie Chen. "Compressive Phase Retrieval via Reweighted Amplitude Flow". IEEE Transactions on Signal Processing 66, nr 19 (1.10.2018): 5029–40. http://dx.doi.org/10.1109/tsp.2018.2862395.
Pełny tekst źródłaSchniter, Philip, i Sundeep Rangan. "Compressive Phase Retrieval via Generalized Approximate Message Passing". IEEE Transactions on Signal Processing 63, nr 4 (luty 2015): 1043–55. http://dx.doi.org/10.1109/tsp.2014.2386294.
Pełny tekst źródłaPeng, Tong, Runze Li, Junwei Min, Dan Dan, Meiling Zhou, Xianghua Yu, Chunmin Zhang, Chen Bai i Baoli Yao. "Quantitative Phase Retrieval Through Scattering Medium via Compressive Sensing". IEEE Photonics Journal 14, nr 1 (luty 2022): 1–8. http://dx.doi.org/10.1109/jphot.2021.3136509.
Pełny tekst źródłaDi, Hong, i Xin Zhang. "Compressive image encryption with customized key based on phase retrieval". Optical Engineering 56, nr 2 (10.02.2017): 023103. http://dx.doi.org/10.1117/1.oe.56.2.023103.
Pełny tekst źródłaJerez, Andres, Samuel Pinilla i Henry Arguello. "Fast Target Detection via Template Matching in Compressive Phase Retrieval". IEEE Transactions on Computational Imaging 6 (2020): 934–44. http://dx.doi.org/10.1109/tci.2020.2995999.
Pełny tekst źródłaOhlsson, Henrik, Allen Y. Yang, Roy Dong i S. Shankar Sastry. "Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming*". IFAC Proceedings Volumes 45, nr 16 (lipiec 2012): 89–94. http://dx.doi.org/10.3182/20120711-3-be-2027.00415.
Pełny tekst źródłaLi, Yingying, Jinchuan Zhou, Zhongfeng Sun i Jingyong Tang. "Heavy-Ball-Based Hard Thresholding Pursuit for Sparse Phase Retrieval Problems". Mathematics 11, nr 12 (16.06.2023): 2744. http://dx.doi.org/10.3390/math11122744.
Pełny tekst źródłaPedarsani, Ramtin, Dong Yin, Kangwook Lee i Kannan Ramchandran. "PhaseCode: Fast and Efficient Compressive Phase Retrieval Based on Sparse-Graph Codes". IEEE Transactions on Information Theory 63, nr 6 (czerwiec 2017): 3663–91. http://dx.doi.org/10.1109/tit.2017.2693287.
Pełny tekst źródłaHu, Chen, Xiaodong Wang, Linglong Dai i Junjie Ma. "Partially Coherent Compressive Phase Retrieval for Millimeter-Wave Massive MIMO Channel Estimation". IEEE Transactions on Signal Processing 68 (2020): 1673–87. http://dx.doi.org/10.1109/tsp.2020.2975914.
Pełny tekst źródłaRozprawy doktorskie na temat "Compressive phase retrieval"
Tian, Lei Ph D. Massachusetts Institute of Technology. "Compressive phase retrieval". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81756.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (p. 129-138).
Recovering a full description of a wave from limited intensity measurements remains a central problem in optics. Optical waves oscillate too fast for detectors to measure anything but time{averaged intensities. This is unfortunate since the phase can reveal important information about the object. When the light is partially coherent, a complete description of the phase requires knowledge about the statistical correlations for each pair of points in space. Recovery of the correlation function is a much more challenging problem since the number of pairs grows much more rapidly than the number of points. In this thesis, quantitative phase imaging techniques that works for partially coherent illuminations are investigated. In order to recover the phase information with few measurements, the sparsity in each underly problem and ecient inversion methods are explored under the framework of compressed sensing. In each phase retrieval technique under study, diffraction during spatial propagation is exploited as an effective and convenient mechanism to uniformly distribute the information about the unknown signal into the measurement space. Holography is useful to record the scattered field from a sparse distribution of particles; the ability of localizing each particles using compressive reconstruction method is studied. When a thin sample is illuminated with partially coherent waves, the transport of intensity phase retrieval method is shown to be eective to recover the optical path length of the sample and remove the eect of the illumination. This technique is particularly suitable for X-ray phase imaging since it does not require a coherent source or any optical components. Compressive tomographic reconstruction, which makes full use of the priors that the sample consists of piecewise constant refractive indices, are demonstrated to make up missing data. The third technique, known as the phase space tomography (PST), addresses the correlation function recovery problem. Implementing the PST involves measuring many intensity images under spatial propagation. Experimental demonstration of a compressive reconstruction method, which finds the sparse solution by decomposing the correlation function into a few mutually uncorrelated coherent modes, is presented to produce accurate reconstruction even when the measurement suers from the 'missing cone' problem in the Fourier domain.
by Lei Tian.
Ph.D.
Saqueb, Syed An Nazmus. "Computational THz Imaging: High-resolution THz Imaging via Compressive Sensing and Phase-retrieval Algorithms". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1545836443000865.
Pełny tekst źródłaKilledar, Vinayak. "Solving Inverse Problems Using a Deep Generative Prior". Thesis, 2021. https://etd.iisc.ac.in/handle/2005/5234.
Pełny tekst źródłaCzęści książek na temat "Compressive phase retrieval"
"Phase Retrieval". W Optical Compressive Imaging, 261–96. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.4324/9781315371474-14.
Pełny tekst źródłaAvirappattu, George. "On Efficient Acquisition and Recovery Methods for Certain Types of Big Data". W Big Data, 105–15. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9840-6.ch006.
Pełny tekst źródłaAvirappattu, George. "On Efficient Acquisition and Recovery Methods for Certain Types of Big Data". W Advances in Public Policy and Administration, 137–47. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9649-5.ch008.
Pełny tekst źródłaStreszczenia konferencji na temat "Compressive phase retrieval"
Barbastathis, George, Justin W. Lee, Lei Tian i Se Baek Oh. "Compressive Phase Retrieval". W Computational Optical Sensing and Imaging. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/cosi.2011.cmc1.
Pełny tekst źródłaMoravec, Matthew L., Justin K. Romberg i Richard G. Baraniuk. "Compressive phase retrieval". W Optical Engineering + Applications, redaktorzy Dimitri Van De Ville, Vivek K. Goyal i Manos Papadakis. SPIE, 2007. http://dx.doi.org/10.1117/12.736360.
Pełny tekst źródłaBarbastathis, George. "Compressive Phase Retrieval". W Digital Holography and Three-Dimensional Imaging. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/dh.2015.dt1a.1.
Pełny tekst źródłaViswanathan, Aditya, i Mark Iwen. "Fast compressive phase retrieval". W 2015 49th Asilomar Conference on Signals, Systems and Computers. IEEE, 2015. http://dx.doi.org/10.1109/acssc.2015.7421436.
Pełny tekst źródłaGao, Yunhui, i Liangcai Cao. "High-throughput quantitative phase imaging via compressive phase retrieval". W Quantitative Phase Imaging IX, redaktorzy YongKeun Park i Yang Liu. SPIE, 2023. http://dx.doi.org/10.1117/12.2655445.
Pełny tekst źródłaBakhshizadeh, Milad, Arian Maleki i Shirin Jalali. "Compressive Phase Retrieval of Structured Signals". W 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437687.
Pełny tekst źródłaTalegaonkar, Chinmay, Parthasarathi Khirwadkar i Ajit Rajwade. "Compressive Phase Retrieval under Poisson Noise". W 2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019. http://dx.doi.org/10.1109/icip.2019.8803017.
Pełny tekst źródłaBodmann, Bernhard G., i Nathaniel Hammen. "Error bounds for noisy compressive phase retrieval". W 2015 International Conference on Sampling Theory and Applications (SampTA). IEEE, 2015. http://dx.doi.org/10.1109/sampta.2015.7148909.
Pełny tekst źródłaDon, Michael, i Gonzalo Arce. "Antenna Pattern Measurement with Compressive Phase Retrieval". W 2020 IEEE Radio and Wireless Symposium (RWS). IEEE, 2020. http://dx.doi.org/10.1109/rws45077.2020.9050117.
Pełny tekst źródłaLi, Yi, i Vasileios Nakos. "Sublinear- Time Algorithms for Compressive Phase Retrieval". W 2018 IEEE International Symposium on Information Theory (ISIT). IEEE, 2018. http://dx.doi.org/10.1109/isit.2018.8437599.
Pełny tekst źródła