Artykuły w czasopismach na temat „COMPRESSION-ABSORPTION SYSTEM”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „COMPRESSION-ABSORPTION SYSTEM”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Fernández-Seara, José, Jaime Sieres i Manuel Vázquez. "Compression–absorption cascade refrigeration system". Applied Thermal Engineering 26, nr 5-6 (kwiecień 2006): 502–12. http://dx.doi.org/10.1016/j.applthermaleng.2005.07.015.
Pełny tekst źródłaJain, Vaibhav. "A Review of Vapor Compression-Absorption Integrated Refrigeration Systems". International Journal of Advance Research and Innovation 6, nr 2 (2018): 35–43. http://dx.doi.org/10.51976/ijari.621807.
Pełny tekst źródłaChen, Li-Ping, Liang Cai, Xiao Zhang, Xiao Xu i Jing-Yi Qiao. "Hybrid electric vehicle absorption-compression refrigeration system". IOP Conference Series: Earth and Environmental Science 199 (19.12.2018): 032072. http://dx.doi.org/10.1088/1755-1315/199/3/032072.
Pełny tekst źródłaRamesh kumar, A., i . "Thermodynamic Analysis of Hybrid Absorption Compression System". International Journal of Engineering & Technology 7, nr 3.34 (1.09.2018): 445. http://dx.doi.org/10.14419/ijet.v7i3.34.19356.
Pełny tekst źródłaAgarwal, Shyam, B. B. Arora i Akhilesh Arora. "Thermodynamic Analysis Of vapour-Absorption (H2O- LiBr)-Compression Combined Refrigeration System Energized Bya Microgas-Turbine". International Journal of Advance Research and Innovation 6, nr 4 (2018): 130–36. http://dx.doi.org/10.51976/ijari.641815.
Pełny tekst źródłaRamanathan, Anand, i Prabhakaran Gunasekaran. "Simulation of absorption refrigeration system for automobile application". Thermal Science 12, nr 3 (2008): 5–13. http://dx.doi.org/10.2298/tsci0803005r.
Pełny tekst źródłaPutra, Nandy, H. Ardiyansya, Ridho Irwansyah, Wayan Nata Septiadi, A. Adiwinata, A. Renaldi i K. Benediktus. "Thermoelectric Heat Pipe-Based Refrigerator: System Development and Comparison with Thermoelectric, Absorption and Vapor Compression Refrigerators". Advanced Materials Research 651 (styczeń 2013): 736–44. http://dx.doi.org/10.4028/www.scientific.net/amr.651.736.
Pełny tekst źródłaWang, Lin, Shuang Ping Duan i Xiao Long Cui. "Performance Analysis of Solar-Assisted Refrigeration Cycle". Applied Mechanics and Materials 170-173 (maj 2012): 2504–7. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.2504.
Pełny tekst źródłaXu, Yingjie, FuSheng Chen, Qin Wang, Xiaohong Han, Dahong Li i Guangming Chen. "A novel low-temperature absorption–compression cascade refrigeration system". Applied Thermal Engineering 75 (styczeń 2015): 504–12. http://dx.doi.org/10.1016/j.applthermaleng.2014.10.043.
Pełny tekst źródłaYe, Bicui, Shufei Sun i Zheng Wang. "Potential for Energy Utilization of Air Compression Section Using an Open Absorption Refrigeration System". Applied Sciences 12, nr 13 (23.06.2022): 6373. http://dx.doi.org/10.3390/app12136373.
Pełny tekst źródłaMussati, Sergio F., Tatiana Morosuk i Miguel C. Mussati. "Superstructure-Based Optimization of Vapor Compression-Absorption Cascade Refrigeration Systems". Entropy 22, nr 4 (10.04.2020): 428. http://dx.doi.org/10.3390/e22040428.
Pełny tekst źródłaWang, Ze, Honghong Shen, Qunyin Gu, Daoyuan Wen, Gang Liu, Weijun Gao i Jianxing Ren. "Economic Analysis of Heat Pump Recovery System for Circulating Water Waste Heat in Power Plant". E3S Web of Conferences 256 (2021): 02011. http://dx.doi.org/10.1051/e3sconf/202125602011.
Pełny tekst źródłaPandey, Navneet Kumar, i V. K. Bajpai. "Effect of operating variables on modified compression-absorption refrigeration system". i-manager's Journal on Mechanical Engineering 4, nr 2 (15.04.2014): 38–43. http://dx.doi.org/10.26634/jme.4.2.2684.
Pełny tekst źródłaSACHDEVA, GULSHAN, VAIBHAV JAIN i S. S. KACHHWAHA. "EXERGY ANALYSIS OF A VAPOR COMPRESSION–VAPOR ABSORPTION CASCADE SYSTEM". International Journal of Air-Conditioning and Refrigeration 21, nr 04 (grudzień 2013): 1350026. http://dx.doi.org/10.1142/s2010132513500260.
Pełny tekst źródłaYu, Jianting, Zeyu Li, Erjian Chen, Yongrui Xu, Hongkai Chen i Le Wang. "Experimental assessment of solar absorption-subcooled compression hybrid cooling system". Solar Energy 185 (czerwiec 2019): 245–54. http://dx.doi.org/10.1016/j.solener.2019.04.055.
Pełny tekst źródłaLi, Zeyu, Liming Liu i Yue Jing. "Exergoeconomic analysis of solar absorption-subcooled compression hybrid cooling system". Energy Conversion and Management 144 (lipiec 2017): 205–16. http://dx.doi.org/10.1016/j.enconman.2017.04.052.
Pełny tekst źródłaPratihar, A. K., S. C. Kaushik i R. S. Agarwal. "Performance evaluation of a small capacity compression–absorption refrigeration system". Applied Thermal Engineering 42 (wrzesień 2012): 41–48. http://dx.doi.org/10.1016/j.applthermaleng.2012.03.011.
Pełny tekst źródłaColorado, D., i V. M. Velázquez. "Exergy analysis of a compression-absorption cascade system for refrigeration". International Journal of Energy Research 37, nr 14 (27.02.2013): 1851–65. http://dx.doi.org/10.1002/er.3012.
Pełny tekst źródłaHerrera-Romero, JV, i Dario Colorado-Garrido. "Comparative Study of a Compression–Absorption Cascade System Operating with NH3-LiNO3, NH3-NaSCN, NH3-H2O, and R134a as Working Fluids". Processes 8, nr 7 (10.07.2020): 816. http://dx.doi.org/10.3390/pr8070816.
Pełny tekst źródłaSACHDEVA, GULSHAN, VAIBHAV JAIN i S. S. KACHHWAHA. "ENERGY ANALYSIS OF A VAPOR COMPRESSION SYSTEM CASCADED WITH AMMONIA–WATER ABSORPTION SYSTEM". International Journal of Air-Conditioning and Refrigeration 22, nr 01 (marzec 2014): 1450007. http://dx.doi.org/10.1142/s2010132514500072.
Pełny tekst źródłaTran, TrongNhan, Arameh Eyvazian, Quirino Estrada, DucHieu Le, NhatTan Nguyen i HuuSon Le. "Lateral Behaviors of Nested Tube Systems Under Quasi-Static Condition". International Journal of Applied Mechanics 12, nr 04 (maj 2020): 2050046. http://dx.doi.org/10.1142/s1758825120500465.
Pełny tekst źródłaLi, Qingyang, Shiqi Zhao, Dechang Wang, Qinglu Song, Sai Zhou, Xiaohe Wang i Yanhui Li. "Simulation Study on Solar Single/Double-Effect Switching LiBr-H2O Absorption Refrigeration System". Energies 16, nr 7 (3.04.2023): 3220. http://dx.doi.org/10.3390/en16073220.
Pełny tekst źródłaBellos, Evangelos, i Christos Tzivanidis. "CO2 Transcritical Refrigeration Cycle with Dedicated Subcooling: Mechanical Compression vs. Absorption Chiller". Applied Sciences 9, nr 8 (18.04.2019): 1605. http://dx.doi.org/10.3390/app9081605.
Pełny tekst źródłaLi, Zeyu, Jianting Yu, Erjian Chen i Yue Jing. "Off-Design Modeling and Simulation of Solar Absorption-Subcooled Compression Hybrid Cooling System". Applied Sciences 8, nr 12 (13.12.2018): 2612. http://dx.doi.org/10.3390/app8122612.
Pełny tekst źródłaChen, Yi, Wei Han i Hongguang Jin. "Analysis of an absorption/absorption–compression refrigeration system for heat sources with large temperature change". Energy Conversion and Management 113 (kwiecień 2016): 153–64. http://dx.doi.org/10.1016/j.enconman.2016.01.063.
Pełny tekst źródłaLiang, Youcai, Zhibin Yu i Wenguang Li. "A Waste Heat-Driven Cooling System Based on Combined Organic Rankine and Vapour Compression Refrigeration Cycles". Applied Sciences 9, nr 20 (11.10.2019): 4242. http://dx.doi.org/10.3390/app9204242.
Pełny tekst źródłaKairouani, L., i E. Nehdi. "Thermodynamic Analysis of an Absorption/Compression Refrigeration System Using Geothermal Energy". American Journal of Applied Sciences 2, nr 5 (1.05.2005): 914–19. http://dx.doi.org/10.3844/ajassp.2005.914.919.
Pełny tekst źródłaShaikh, Aamir, Abdul Ghafoor Memon, Aakash Deep i Tahwer Hussain. "Thermodynamic Analysis of Combined Vapor Compression and Vapor Absorption Refrigeration System". Mehran University Research Journal of Engineering and Technology 36, nr 3 (1.07.2017): 733–40. http://dx.doi.org/10.22581/muet1982.1703.27.
Pełny tekst źródłaSun, Xiaojing, Linlin Liu, Yu Zhuang, Lei Zhang i Jian Du. "Heat Exchanger Network Synthesis Integrated with Compression–Absorption Cascade Refrigeration System". Processes 8, nr 2 (9.02.2020): 210. http://dx.doi.org/10.3390/pr8020210.
Pełny tekst źródłaAngrisani, G., M. Canelli, C. Roselli, A. Russo, M. Sasso i F. Tariello. "A small scale polygeneration system based on compression/absorption heat pump". Applied Thermal Engineering 114 (marzec 2017): 1393–402. http://dx.doi.org/10.1016/j.applthermaleng.2016.10.048.
Pełny tekst źródłaJain, Vaibhav, S. S. Kachhwaha i Gulshan Sachdeva. "Thermodynamic performance analysis of a vapor compression–absorption cascaded refrigeration system". Energy Conversion and Management 75 (listopad 2013): 685–700. http://dx.doi.org/10.1016/j.enconman.2013.08.024.
Pełny tekst źródłaHe, Hui, Lin Wang, Junfei Yuan, Zhanwei Wang, Wenxuan Fu i Kunfeng Liang. "Performance evaluation of solar absorption-compression cascade refrigeration system with an integrated air-cooled compression cycle". Energy Conversion and Management 201 (grudzień 2019): 112153. http://dx.doi.org/10.1016/j.enconman.2019.112153.
Pełny tekst źródłaCarvalho, F. N., i P. E. L. Barbieri. "Thermoeconomic Simulation of Cascaded and Integrated Vapor Compression-Absorption Refrigeration Systems". Revista de Engenharia Térmica 20, nr 1 (12.04.2021): 93. http://dx.doi.org/10.5380/reterm.v20i1.80463.
Pełny tekst źródłaCorrêa, G. A., J. A. Souza, C. Prentice-Hernández i L. A. O. Rocha. "THERMODYNAMIC EVALUATION OF A TWO STAGES COMPRESSION REFRIGERATION SYSTEM INTEGRATED TO AN ABSORPTION SYSTEM". Revista de Engenharia Térmica 7, nr 2 (31.12.2008): 72. http://dx.doi.org/10.5380/reterm.v7i2.61781.
Pełny tekst źródłaPethe, Anil M., A. T. Patil, D. R. Telange i A. A. Tatode. "Development and Evaluation of Novel Fast Disintegrating Acetaminophen Tablets". International Journal of Pharmaceutical Sciences and Nanotechnology 8, nr 1 (28.02.2015): 2748–55. http://dx.doi.org/10.37285/ijpsn.2015.8.1.7.
Pełny tekst źródłaVerma, Abhishek, S. C. Kaushik i S. K. Tyagi. "Thermodynamic Analysis of a Combined Single Effect Vapour Absorption System and tc-CO2 Compression Refrigeration System". HighTech and Innovation Journal 2, nr 2 (1.06.2021): 87–98. http://dx.doi.org/10.28991/hij-2021-02-02-02.
Pełny tekst źródłaKolbaya, Sofia, Tatiana Simankina i Viktor Albrekht. "Feasibility Study of the Absorption Chiller Integration". Applied Mechanics and Materials 725-726 (styczeń 2015): 1273–78. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.1273.
Pełny tekst źródłaOkafor, Victor. "THERMODYNAMIC ANALYSIS OF COMPRESSOR INLET AIR PRECOOLING TECHNIQUES OF A GAS TURBINE PLANT OPERATIONAL IN NIGERIA ENERGY UTILITY SECTOR". International Journal of Engineering Science Technologies 4, nr 2 (1.04.2020): 13–24. http://dx.doi.org/10.29121/ijoest.v4.i2.2020.74.
Pełny tekst źródłaSun, Zhili, Caiyun Wang, Youcai Liang, Huan Sun, Shengchun Liu i Baomin Dai. "Theoretical study on a novel CO2 Two-stage compression refrigeration system with parallel compression and solar absorption partial cascade refrigeration system". Energy Conversion and Management 204 (styczeń 2020): 112278. http://dx.doi.org/10.1016/j.enconman.2019.112278.
Pełny tekst źródłaJain, Vaibhav, Gulshan Sachdeva i S. S. Kachhwaha. "NLP model based thermoeconomic optimization of vapor compression–absorption cascaded refrigeration system". Energy Conversion and Management 93 (marzec 2015): 49–62. http://dx.doi.org/10.1016/j.enconman.2014.12.095.
Pełny tekst źródłaLi, Zeyu, i Liming Liu. "Economic and environmental study of solar absorption-subcooled compression hybrid cooling system". International Journal of Sustainable Energy 38, nr 2 (3.01.2018): 123–40. http://dx.doi.org/10.1080/14786451.2017.1422252.
Pełny tekst źródłaDixit, Manoj, Akhilesh Arora i S. C. Kaushik. "Thermodynamic and thermoeconomic analyses of two stage hybrid absorption compression refrigeration system". Applied Thermal Engineering 113 (luty 2017): 120–31. http://dx.doi.org/10.1016/j.applthermaleng.2016.10.206.
Pełny tekst źródłaSatapathy, Prasanta Kumar, i M. RamGopal. "Experimental studies on a compression–absorption system for heating and cooling applications". International Journal of Energy Research 32, nr 7 (2008): 595–611. http://dx.doi.org/10.1002/er.1367.
Pełny tekst źródłaSatapathy, Prasanta Kumar. "Exergy analysis of a compression-absorption system for heating and cooling applications". International Journal of Energy Research 32, nr 13 (25.10.2008): 1266–78. http://dx.doi.org/10.1002/er.1417.
Pełny tekst źródłaOchiai, Bungo, i Yohei Shimada. "Reversible Gelation System for Hydrazine Based on Polymer Absorbent". Technologies 6, nr 3 (20.08.2018): 80. http://dx.doi.org/10.3390/technologies6030080.
Pełny tekst źródłaWang, Jian, Xianting Li, Baolong Wang, Wei Wu, Pengyuan Song i Wenxing Shi. "Performance Comparison between an Absorption-compression Hybrid Refrigeration System and a Double-effect Absorption Refrigeration Sys-tem". Procedia Engineering 205 (2017): 241–47. http://dx.doi.org/10.1016/j.proeng.2017.09.959.
Pełny tekst źródłaDelač, Boris, Branimir Pavković i Vladimir Glažar. "Economic and Energetic Assessment and Comparison of Solar Heating and Cooling Systems". Energies 16, nr 3 (23.01.2023): 1241. http://dx.doi.org/10.3390/en16031241.
Pełny tekst źródłaRomage, Guerlin, Cuauhtémoc Jiménez, José de Jesús Reyes, Alejandro Zacarías, Ignacio Carvajal, José Alfredo Jiménez, Jorge Pineda i María Venegas. "Modeling and Simulation of a Hybrid Compression/Absorption Chiller Driven by Stirling Engine and Solar Dish Collector". Applied Sciences 10, nr 24 (17.12.2020): 9018. http://dx.doi.org/10.3390/app10249018.
Pełny tekst źródłaBoghosian, Ronald, Mostafa Mafi, Mohammad Hassan Panjeshahi i Abtin Ataei. "Variable flow and optimization of chiller loading effect on energy saving for screw vapor compression-single effect absorption hybrid chiller plant in hospital mechanical room ‒ case study: Tehran heart hospital". Mechanics & Industry 22 (2021): 9. http://dx.doi.org/10.1051/meca/2021006.
Pełny tekst źródłaSayadi, Sana, Jan Akander, Abolfazl Hayati, Mattias Gustafsson i Mathias Cehlin. "Comparison of Space Cooling Systems from Energy and Economic Perspectives for a Future City District in Sweden". Energies 16, nr 9 (30.04.2023): 3852. http://dx.doi.org/10.3390/en16093852.
Pełny tekst źródła