Gotowa bibliografia na temat „Compound droplets”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Compound droplets”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Compound droplets"
Xing, Lei, Jinyu Li, Minghu Jiang i Lixin Zhao. "Dynamic behavior of compound droplets with millimeter-sized particles impacting substrates with different wettabilities". Physics of Fluids 35, nr 2 (luty 2023): 022108. http://dx.doi.org/10.1063/5.0137505.
Pełny tekst źródłaNguyen, Khanh P., i Truong V. Vu. "Collision Modes of Two Eccentric Compound Droplets". Processes 8, nr 5 (18.05.2020): 602. http://dx.doi.org/10.3390/pr8050602.
Pełny tekst źródłaPronkina, Tatiana Vasilievna. "About the influence of the forces of interaction between the droplets on the dynamics of emulsion". Yugra State University Bulletin 15, nr 1 (9.12.2019): 59–65. http://dx.doi.org/10.17816/byusu20190159-65.
Pełny tekst źródłaSun, Meimei, Miao Zhao i Wei Gao. "Hydrodynamics of Compound Droplet Flowing in the Curved Minichannel". Advances in Condensed Matter Physics 2019 (15.10.2019): 1–11. http://dx.doi.org/10.1155/2019/5726974.
Pełny tekst źródłaXue, Xinzhi, i Joseph Katz. "Formation of compound droplets during fragmentation of turbulent buoyant oil jet in water". Journal of Fluid Mechanics 878 (4.09.2019): 98–112. http://dx.doi.org/10.1017/jfm.2019.645.
Pełny tekst źródłaMa, Zeyao, Shuai Zhang, Bo Wang, Qingquan Liu i Xiaodong Chen. "Deformation characteristics of compound droplets with different morphologies during transport in a microchannel". Physics of Fluids 35, nr 4 (kwiecień 2023): 042003. http://dx.doi.org/10.1063/5.0146560.
Pełny tekst źródłaSuzuki, Toyoko, Yunfeng Li, Albert Gevorkian i Eugenia Kumacheva. "Compound droplets derived from a cholesteric suspension of cellulose nanocrystals". Soft Matter 14, nr 47 (2018): 9713–19. http://dx.doi.org/10.1039/c8sm01716f.
Pełny tekst źródłaGhaznavi, Amirreza, Yang Lin, Mark Douvidzon, Adam Szmelter, Alannah Rodrigues, Malik Blackman, David Eddington i in. "A Monolithic 3D Printed Axisymmetric Co-Flow Single and Compound Emulsion Generator". Micromachines 13, nr 2 (26.01.2022): 188. http://dx.doi.org/10.3390/mi13020188.
Pełny tekst źródłaWeyer, Floriane, Marouen Ben Said, Johannes Hötzer, Marco Berghoff, Laurent Dreesen, Britta Nestler i Nicolas Vandewalle. "Compound Droplets on Fibers". Langmuir 31, nr 28 (8.07.2015): 7799–805. http://dx.doi.org/10.1021/acs.langmuir.5b01391.
Pełny tekst źródłaRuehl, C. R., P. Y. Chuang i A. Nenes. "Aerosol hygroscopicity at high (99 to 100%) relative humidities". Atmospheric Chemistry and Physics Discussions 9, nr 4 (24.07.2009): 15595–640. http://dx.doi.org/10.5194/acpd-9-15595-2009.
Pełny tekst źródłaRozprawy doktorskie na temat "Compound droplets"
Black, James Aaron. "Compound droplets for lab-on-a-chip". Diss., Georgia Institute of Technology, 2016. http://hdl.handle.net/1853/54947.
Pełny tekst źródłaQu, Xiaofeng. "Dynamics of Compound Droplets via 3D Spectral Boundary Elements". Thesis, North Dakota State University, 2013. https://hdl.handle.net/10365/27008.
Pełny tekst źródłaDepartment of Energy
National Science Foundation
ND EPSCoR
Farhan, Noor M. "Multiphase Droplet Interactions with a Single Fiber". VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/5937.
Pełny tekst źródłaTheberge, Ashleigh Brooks. "Droplet-based microfluidics for chemical synthesis and integrated analysis". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609687.
Pełny tekst źródłaWang, Miao. "Study of Volatile Organic Compounds (VOC) in the cloudy atmosphere : air/droplet partitioning of VOC". Thesis, Université Clermont Auvergne (2017-2020), 2019. http://www.theses.fr/2019CLFAC080.
Pełny tekst źródłaVolatile Organic Compounds (VOC), including saturated, unsaturated, and other substituted hydrocarbons, play a major role in atmospheric chemistry. They are primarily emitted by anthropogenic and biogenic sources into the atmosphere; they are also transformed in situ by chemical reactions, and more specifically, by photo-oxidation leading to the formation of ozone (O3) and Secondary Organic Aerosol (SOA). By altering the organic fraction of aerosol particles, VOC modify the Earth’s radiative balance through a direct effect (absorption and scattering of solar radiation) or through indirect effect by altering cloud microphysical properties. They also present a direct effect on human health and on the environment.During their atmospheric transport, VOC and their oxidation products, Oxygenated Volatile Organic Compounds (OVOC), may partition between the gaseous and aqueous phases depending on their solubility. Clouds have a significant effect on tropospheric chemistry by redistributing trace constituents between phases and by providing liquid water in which aqueous phase chemistry can take place. Indeed, during the cloud lifetime, chemical compounds and particularly VOC are efficiently transformed since clouds favor the development of complex “multiphase chemistry”. The latter presents several particularities. First, photochemical processes inside the droplets are important in the transformation of chemical compounds. Second, aqueous chemical reactions are efficient and can be faster than the equivalent reactions in the gas phase. This can be related to the presence of strong oxidants such as hydrogen peroxide H2O2 or Transition Metal Ions (TMI), which participate in the formation of radicals such as hydroxyl radicals (HO•) that favor oxidation processes. Furthermore, the presence of viable microorganisms has been highlighted and shown to participate in transformations of the chemical species. Finally, these transformations in clouds are also strongly perturbed by microphysical processes that control formation, lifetime and dissipation of clouds. These processes will redistribute the chemical species between the different reservoirs (cloud water, rain, particle phase, gaseous phase, and solid ice phase). In this frame, the transformation of VOC in the cloud medium can lead to the production of secondary compounds contributing to SOA formation, reported as “cloud aqSOA”. This secondary organic aerosol mass produced during the cloud lifetime could explain in part the ubiquity of small dicarboxylic and keto acids and high molecular-weight compounds measured in aerosol particles, fog water, cloud water, or rainwater at many locations, as they have neither substantial direct emission sources nor any identified important source in the gas phase. This aqSOA mass stays in the particle phase after cloud evaporation implying a modification of the (micro)physical and chemical properties of aerosol particles (particle size, chemical composition, morphology). This leads to modifications of their impacts on consecutive cloud or fog cycles (aerosol indirect effects) and of their interactions with incoming radiation by scattering/absorbing (aerosol direct effect). (...)
Gidda, Satinder K., Samantha C. Watt, Jillian Collins-Silva, Aruna Kilaru, Vincent Arondel, Olga Yurchenko, Patrick J. Horn i in. "Lipid Droplet-Associated Proteins (ldaps) Are Involved in the Compartmentalization of Lipophilic Compounds in Plant Cells". Digital Commons @ East Tennessee State University, 2013. https://doi.org/10.4161/psb.27141.
Pełny tekst źródłaAsa-Awuku, Akua Asabea. "Characterizing water-soluble organic aerosol and their effects on cloud droplet formation: Interactions of carbonaceous matter with water vapor". Diss., Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22658.
Pełny tekst źródłaGustavsson, Joel. "Reactions in the Lower Part of the Blast Furnace with Focus on Silicon". Doctoral thesis, Stockholm, 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-59.
Pełny tekst źródłaIyer, Chitra C. "The Role of Muscle and Nerve in Spinal Muscular Atrophy". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1451568269.
Pełny tekst źródłaChen, Cheng-Wen, i 陳正文. "Heating and Micro-Explosion of Compound Droplets". Thesis, 2005. http://ndltd.ncl.edu.tw/handle/99663209639170532683.
Pełny tekst źródła國立成功大學
機械工程學系碩博士班
93
A compound drop, composed of a fuel shell and a water core, was suspended and heated to micro-explosion. Three ambient temperatures, namely, 300 oC, 400 oC, and 500 oC and two fuels, namely diesel and n-hexadecane, were tested. The heating process was recorded by a high-speed video system, and the time at temperature of the micro-explosion were measured. The experimental results on compound drops were also compared with the micro-explosion of a heated emulsified W/O diesel-water drop. The micro-explosion of a heated compound drop was classified as either a indirect micro-explosion, if there were quite a few bubbles generated at the shell-core interface before the explosion, or a direct micro-explosion, if few or no bubble could be seen before the explosion. At an ambient temperature of 400 oC or 500 oC, the micro-explosion time was observed to increase with the micro-explosion temperature; but this trend was not as obvious at 300 oC ambient temperature. The intensity of the micro-explosion rose as the micro-explosion time lengthened, because the accumulation of thermal energy within the over-saturated water core drop grew to a higher extent. However, the size of the core water drop was not seen to influence either the micro-explosion time or micro-explosion temperature. Compared with pure n-hexadecane and pure water, the impurities or microscopic air bubbles in diesel and dyed water enhanced nonhomogenous nucleation and thus more steam bubbles were produced before micro-explosion. Furthermore, contrary to the intense micro-explosion of a compound drop, a heated emulsified diesel-water drop generally expanded, and followed by squirting of steam to relieve the pressure within the expanded drop. The distributed microscopic water drops in an emulsified drop acted as nonhomogeneous nucleation sites and made an overall micro-explosion improbable.
Części książek na temat "Compound droplets"
Nagelberg, Sara. "Multi-Phase Droplets as Dynamic Compound Micro-Lenses". W Dynamic and Stimuli-Responsive Multi-Phase Emulsion Droplets for Optical Components, 13–31. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53460-8_2.
Pełny tekst źródłaMucha, Eike, Daniel Thomas, Maike Lettow, Gerard Meijer, Kevin Pagel i Gert von Helden. "Spectroscopy of Small and Large Biomolecular Ions in Helium-Nanodroplets". W Topics in Applied Physics, 241–80. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-94896-2_6.
Pełny tekst źródłaBomhard, Ernst, Georg Luckhaus, Manfred Marsmann i Andreas Zywietz. "Induction of Hyaline Droplet Accumulation in Renal Cortex of Male Rats by Aromatic Compounds". W Nephrotoxicity, 551–56. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4757-2040-2_84.
Pełny tekst źródłaCadle, R. D., i R. C. Robbins. "Kinetics of the Reaction Between Ammonia and Sulfuric Acid Droplets in an Aerosol". W Atmospheric Chemistry of Chlorine and Sulfur Compounds: Proceedings of a Symposium Held at the Robert A. Taft Sanitary Engineering Center, Cincinnati, Ohio, November 4-6, 1957, 113–14. Washington D. C.: American Geophysical Union, 2013. http://dx.doi.org/10.1029/gm003p0113.
Pełny tekst źródłaZeinali, Shakiba, i Janusz Pawliszyn. "Application of SPME for Comprehensive Analysis of Aerosol Samples". W Evolution of Solid Phase Microextraction Technology, 602–10. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/bk9781839167300-00602.
Pełny tekst źródła"Organometallic Vapor Phase and Droplet Heteroepitaxy of Quantum Structures". W InP and Related Compounds, 581–614. CRC Press, 2000. http://dx.doi.org/10.1201/9781482282986-19.
Pełny tekst źródłaCosta, Everton Ricardo Carneiro, Adriana Ferreira Souza, Galba Maria de Campos Takaki i Rosileide Fontenele da Silva Andrade. "Bioemulsifier production by Penicillium Citrinum UCP 1183 and microstructural characterization of emulsion droplets". W CONNECTING EXPERTISE MULTIDISCIPLINARY DEVELOPMENT FOR THE FUTURE. Seven Editora, 2023. http://dx.doi.org/10.56238/connexpemultidisdevolpfut-168.
Pełny tekst źródłaLynch, David K. "Cirrus: History and Definition". W Cirrus. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780195130720.003.0005.
Pełny tekst źródłaPop, Laura-Ancuta, Oana Zanoaga, Paul Chiroi, Andreea Nutu, Schuyler S. Korban, Cristina Stefan, Alexandru Irimie i Ioana Berindan-Neagoe. "Microarrays and NGS for Drug Discovery". W Drug Design - Novel Advances in the Omics Field and Applications. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.96657.
Pełny tekst źródłaWhiteman, C. David. "Clouds and Fogs". W Mountain Meteorology. Oxford University Press, 2000. http://dx.doi.org/10.1093/oso/9780195132717.003.0014.
Pełny tekst źródłaStreszczenia konferencji na temat "Compound droplets"
Weyer, Floriane, Marjorie Lismont, Laurent Dreesen i Nicolas Vandewalle. "Poster: Highly sophisticated compound droplets on fiber arrays". W 67th Annual Meeting of the APS Division of Fluid Dynamics. American Physical Society, 2014. http://dx.doi.org/10.1103/aps.dfd.2014.gfm.p0049.
Pełny tekst źródłaPalaniappan, D. "Viscous Flows Involving a Liquid-Vapor Compound Droplet". W ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/fed-24942.
Pełny tekst źródłaWang, Ting, i Xianchang Li. "Simulation of Mist Film Cooling at Gas Turbine Operating Conditions". W ASME Turbo Expo 2006: Power for Land, Sea, and Air. ASMEDC, 2006. http://dx.doi.org/10.1115/gt2006-90742.
Pełny tekst źródłaSteele, Adam, Stephen Moran, Andrew Cannon, William King, Ilker Bayer i Eric Loth. "Conformal Nanocomposite Spray Coatings on Micro-Patterned Surfaces for Superhydrophobicity". W ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences. ASMEDC, 2008. http://dx.doi.org/10.1115/fedsm2008-55051.
Pełny tekst źródłaWaez, Mir Seliman, Steven J. Eckels i Christopher M. Sorensen. "Low-Cost Particulate Detection in Bleed Air". W ASME 2019 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/imece2019-10460.
Pełny tekst źródłaSugai, T., T. Abe i Y. Minamitani. "Improvement of efficiency for decomposition of organic compound in water using pulsed streamer discharge in air with water droplets by increasing of residence time". W 2009 IEEE Pulsed Power Conference (PPC). IEEE, 2009. http://dx.doi.org/10.1109/ppc.2009.5386130.
Pełny tekst źródłaFang, M., S. Chandra i C. B. Park. "Building Vertical Walls by Deposition of Molten Metal Droplets". W ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-82006.
Pełny tekst źródłaJi, C. Y., i Y. Y. Yan. "A Molecular Dynamics Simulation of Droplets Merging in Mist Flow of Flow Boiling Microchannel". W ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels. ASMEDC, 2008. http://dx.doi.org/10.1115/icnmm2008-62120.
Pełny tekst źródłaFeng, Liyan, Zixin Wang, Ping Yi, Weixin Gong, Jingchen Cui, Lei Chen, Jiangping Tian i Wuqiang Long. "Numerical Study on Evaporation of Lubricating Oil Droplets Under Natural Gas Engine Conditions". W ASME 2018 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/icef2018-9639.
Pełny tekst źródłamorqenstern, E., i H. Patscheke. "THE SECRETORY PATHWAY IN PLATELETS STUDIED BY CRYO-FIXATION". W XIth International Congress on Thrombosis and Haemostasis. Schattauer GmbH, 1987. http://dx.doi.org/10.1055/s-0038-1643491.
Pełny tekst źródłaRaporty organizacyjne na temat "Compound droplets"
Lawson. L51597 Feasibility Study of New Technology for Intake Air Filtration. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 1989. http://dx.doi.org/10.55274/r0010105.
Pełny tekst źródła