Artykuły w czasopismach na temat „Compositionally graded materials”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Compositionally graded materials”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Coco, Lorenzo, Florent Lefevre-Schlick, Olivier Bouaziz, Xiang Wang, J. K. Solberg i David Embury. "The mechanical response of compositionally graded materials". Materials Science and Engineering: A 483-484 (czerwiec 2008): 266–69. http://dx.doi.org/10.1016/j.msea.2006.12.164.
Pełny tekst źródłaTorrecillas, R. "Compositionally graded zirconia-molybdenum materials without residual stress". Metal Powder Report 57, nr 6 (czerwiec 2002): 54. http://dx.doi.org/10.1016/s0026-0657(02)80261-2.
Pełny tekst źródłaZhong, S., S. P. Alpay, Z. G. Ban i J. V. Mantese. "Effective pyroelectric response of compositionally graded ferroelectric materials". Applied Physics Letters 86, nr 9 (28.02.2005): 092903. http://dx.doi.org/10.1063/1.1866505.
Pełny tekst źródłaChéhab, Béchir, Hatem Zurob, David Embury, Olivier Bouaziz i Yves Brechet. "Compositionally Graded Steels: A Strategy for Materials Development". Advanced Engineering Materials 11, nr 12 (grudzień 2009): 992–99. http://dx.doi.org/10.1002/adem.200900180.
Pełny tekst źródłaPopa, Monica, José-Maria Calderón Moreno, Pavol Hvizdoš, Raúl Bermejo i Guy Anné. "Residual Stress Profile Determined by Piezo-Spectroscopy in Alumina/Alumina-Zirconia Layers Separated by a Compositionally Graded Intermediate Layer". Key Engineering Materials 290 (lipiec 2005): 328–31. http://dx.doi.org/10.4028/www.scientific.net/kem.290.328.
Pełny tekst źródłaWu, Jiagang, John Wang, Dingquan Xiao i Jianguo Zhu. "Compositionally graded bismuth ferrite thin films". Journal of Alloys and Compounds 509, nr 35 (wrzesień 2011): L319—L323. http://dx.doi.org/10.1016/j.jallcom.2011.05.076.
Pełny tekst źródłaSuresh, S., A. E. Giannakopoulos i J. Alcalá. "Spherical indentation of compositionally graded materials: Theory and experiments". Acta Materialia 45, nr 4 (kwiecień 1997): 1307–21. http://dx.doi.org/10.1016/s1359-6454(96)00291-1.
Pełny tekst źródłaPeka, H. P., D. A. Pulemyotov i M. P. Verkhovodov. "Compositionally graded semiconductors with intervalley crossover". Semiconductor Science and Technology 8, nr 8 (1.08.1993): 1517–22. http://dx.doi.org/10.1088/0268-1242/8/8/006.
Pełny tekst źródłaKim, Yeon-Wook, Tae-Hyun Nam i Seong-Min Lee. "Martensitic Transformation Behaviors of Compositionally Graded Ti–Ni-Based Shape Memory Alloys". Science of Advanced Materials 12, nr 10 (1.10.2020): 1586–90. http://dx.doi.org/10.1166/sam.2020.3802.
Pełny tekst źródłaKlic, A., i M. Marvan. "Pseudo-spin model of compositionally graded ferroelectrics". Phase Transitions 79, nr 6-7 (czerwiec 2006): 493–503. http://dx.doi.org/10.1080/01411590600892377.
Pełny tekst źródłaShut, V. N., S. R. Syrtsov i V. L. Trublovsky. "Ferroelectric properties of compositionally graded BST ceramics". Phase Transitions 83, nr 5 (maj 2010): 368–77. http://dx.doi.org/10.1080/01411594.2010.484900.
Pełny tekst źródłaBan, Z. G., S. P. Alpay i J. V. Mantese. "Hysteresis Offset and Dielectric Response of Compositionally Graded Ferroelectric Materials". Integrated Ferroelectrics 58, nr 1 (sierpień 2003): 1281–91. http://dx.doi.org/10.1080/10584580390259470.
Pełny tekst źródłaRousseau, C. E., i H. V. Tippur. "Compositionally graded materials with cracks normal to the elastic gradient". Acta Materialia 48, nr 16 (październik 2000): 4021–33. http://dx.doi.org/10.1016/s1359-6454(00)00202-0.
Pełny tekst źródłaGam, J. S., K. S. Han, S. S. Park i H. C. Park. "Joining of TiB2-AL2O3Using Compositionally Graded Interlayers". Materials and Manufacturing Processes 14, nr 4 (styczeń 1999): 537–46. http://dx.doi.org/10.1080/10426919908914848.
Pełny tekst źródłaZeng, Minxiang, Yipu Du, Qiang Jiang, Nicholas Kempf, Chen Wei, Miles V. Bimrose, A. N. M. Tanvir i in. "High-throughput printing of combinatorial materials from aerosols". Nature 617, nr 7960 (10.05.2023): 292–98. http://dx.doi.org/10.1038/s41586-023-05898-9.
Pełny tekst źródłaLee, Kenneth E., i Eugene A. Fitzgerald. "High-quality metamorphic compositionally graded InGaAs buffers". Journal of Crystal Growth 312, nr 2 (styczeń 2010): 250–57. http://dx.doi.org/10.1016/j.jcrysgro.2009.10.041.
Pełny tekst źródłaGao, Lei. "Optical nonlinearity enhancement of compositionally graded films". European Physical Journal B 44, nr 4 (kwiecień 2005): 481–86. http://dx.doi.org/10.1140/epjb/e2005-00147-x.
Pełny tekst źródłaZhang, Tong-Yi. "A dislocation in a compositionally graded epilayer". Physica Status Solidi (a) 148, nr 1 (16.03.1995): 175–89. http://dx.doi.org/10.1002/pssa.2211480115.
Pełny tekst źródłaNakano, Junichi, Kimio Fujii i Reiji Yamada. "Mechanical Properties of Oxidation-Resistant SiC/C Compositionally Graded Graphite Materials". Journal of the American Ceramic Society 80, nr 11 (listopad 1997): 2897–902. http://dx.doi.org/10.1111/j.1151-2916.1997.tb03209.x.
Pełny tekst źródłaRoumina, R., J. D. Embury, O. Bouaziz i H. S. Zurob. "Mechanical behavior of a compositionally graded 300M steel". Materials Science and Engineering: A 578 (sierpień 2013): 140–49. http://dx.doi.org/10.1016/j.msea.2013.04.006.
Pełny tekst źródłaKulkarni, Tushar, H. Z. Wang, S. N. Basu i V. K. Sarin. "Compositionally graded mullite-based chemical vapor deposited coatings". Journal of Materials Research 24, nr 2 (luty 2009): 470–74. http://dx.doi.org/10.1557/jmr.2009.0062.
Pełny tekst źródłaVallone, Marco, Michele Goano, Francesco Bertazzi, Giovanni Ghione, Stefan Hanna, Detlef Eich i Heinrich Figgemeier. "FDTD simulation of compositionally graded HgCdTe photodetectors". Infrared Physics & Technology 97 (marzec 2019): 203–9. http://dx.doi.org/10.1016/j.infrared.2018.12.041.
Pełny tekst źródłaOkatan, M. B., A. L. Roytburd, V. Nagarajan i S. P. Alpay. "Electrical domain morphologies in compositionally graded ferroelectric films". Journal of Physics: Condensed Matter 24, nr 2 (15.12.2011): 024215. http://dx.doi.org/10.1088/0953-8984/24/2/024215.
Pełny tekst źródłaPal, R., A. Malik, V. Srivastav, B. L. Sharma, V. Dhar, B. Sreedhar i H. P. Vyas. "Compositionally graded interface for passivation of HgCdTe photodiodes". Journal of Electronic Materials 35, nr 10 (październik 2006): 1793–800. http://dx.doi.org/10.1007/s11664-006-0159-0.
Pełny tekst źródłaCai, Minglei, Tedi Kujofsa, Xinkang Chen, Md Tanvirul Islam i John E. Ayers. "Interaction Length for Dislocations in Compositionally-Graded Heterostructures". International Journal of High Speed Electronics and Systems 27, nr 03n04 (wrzesień 2018): 1840022. http://dx.doi.org/10.1142/s0129156418400220.
Pełny tekst źródłaWeiss, C. V., M. B. Okatan, S. P. Alpay, M. W. Cole, E. Ngo i R. C. Toonen. "Compositionally graded ferroelectric multilayers for frequency agile tunable devices". Journal of Materials Science 44, nr 19 (październik 2009): 5364–74. http://dx.doi.org/10.1007/s10853-009-3514-8.
Pełny tekst źródłaWang, C. L., X. S. Wang, Y. Xin, Z. Wang, X. H. Xu, W. L. Zhong i P. L. Zhang. "Phase transition properties of compositionally graded ferroelectric structure". Ferroelectrics 252, nr 1 (luty 2001): 89–96. http://dx.doi.org/10.1080/00150190108016244.
Pełny tekst źródłaShut, V. N., S. R. Syrtsov, V. L. Trublovsky, A. D. Poleyko, S. V. Kostomarov i L. P. Mastyko. "Compositionally Graded BST Ceramics Prepared by Tape Casting". Ferroelectrics 386, nr 1 (12.08.2009): 125–32. http://dx.doi.org/10.1080/00150190902961876.
Pełny tekst źródłaChapa-cabrera, J., i I. E. Reimanis. "Crack deflection in compositionally graded Cu-W composites". Philosophical Magazine A 82, nr 17-18 (listopad 2002): 3393–403. http://dx.doi.org/10.1080/01418610208240450.
Pełny tekst źródłaChapa-Cabrera, J., i I. E. Reimanis. "Crack deflection in compositionally graded Cu–W composites". Philosophical Magazine A 82, nr 17 (20.11.2002): 3393–403. http://dx.doi.org/10.1080/0141861021000017819.
Pełny tekst źródłaMarvan, M., i J. Fousek. "Pyroelectricity and thermodynamic theory of compositionally graded ferroelectric films". Phase Transitions 79, nr 1-2 (styczeń 2006): 153–62. http://dx.doi.org/10.1080/01411590600555834.
Pełny tekst źródłaCho, Kyung Mok, Il Dong Choi i Ik Min Park. "Thermal Properties and Fracture Behavior of Compositionally Graded Al-SiCp Composites". Materials Science Forum 449-452 (marzec 2004): 621–24. http://dx.doi.org/10.4028/www.scientific.net/msf.449-452.621.
Pełny tekst źródłaKim, Eun Seong, Jeong Min Park, Gangaraju Manogna Karthik, Kyung Tae Kim, Ji-Hun Yu, Byeong-Joo Lee i Hyoung Seop Kim. "Local composition detouring for defect-free compositionally graded materials in additive manufacturing". Materials Research Letters 11, nr 7 (5.04.2023): 586–94. http://dx.doi.org/10.1080/21663831.2023.2192244.
Pełny tekst źródłaMerino, Rosa I., J. I. Peña i V. M. Orera. "Compositionally graded YSZ–NiO composites by surface laser melting". Journal of the European Ceramic Society 30, nr 2 (styczeń 2010): 147–52. http://dx.doi.org/10.1016/j.jeurceramsoc.2009.04.031.
Pełny tekst źródłaOu, Canlin, Lu Zhang, Qingshen Jing, Vijay Narayan i Sohini Kar‐Narayan. "Compositionally Graded Organic–Inorganic Nanocomposites for Enhanced Thermoelectric Performance". Advanced Electronic Materials 6, nr 1 (14.10.2019): 1900720. http://dx.doi.org/10.1002/aelm.201900720.
Pełny tekst źródłaSingh, Rajiv, i James Fitz-Gerald. "Surface composites: A new class of engineered materials". Journal of Materials Research 12, nr 3 (marzec 1997): 769–73. http://dx.doi.org/10.1557/jmr.1997.0112.
Pełny tekst źródłaBen-Artzy, A., A. Reichardt, J. P. Borgonia, R. P. Dillon, B. McEnerney, A. A. Shapiro i P. Hosemann. "Compositionally graded SS316 to C300 Maraging steel using additive manufacturing". Materials & Design 201 (marzec 2021): 109500. http://dx.doi.org/10.1016/j.matdes.2021.109500.
Pełny tekst źródłaYahyaoui, N., S. Aloulou, R. Chtourou, A. Sfaxi i M. Oueslati. "Optical properties of compositionally graded InxAl1–xAs/GaAs heterostructures". Thin Solid Films 516, nr 7 (luty 2008): 1604–7. http://dx.doi.org/10.1016/j.tsf.2007.03.083.
Pełny tekst źródłaAdikary, Sudarman Upali, Balakrishnan Sundaravel, Helen Lai-Wa Chan, Ian Howard Wilson i Chung-Loong Choy. "Rutherford backscattering analysis of compositionally graded BaxSr1-xTiO3thin films". Ferroelectrics 262, nr 1 (styczeń 2001): 287–92. http://dx.doi.org/10.1080/00150190108225164.
Pełny tekst źródłaChen, Chang, Zi Liu, Gui Wang i Xiao Feng. "Fabrication and characterization of compositionally graded Bi1−x GdxFeO3 thin films". Materials Science-Poland 32, nr 3 (1.09.2014): 498–502. http://dx.doi.org/10.2478/s13536-014-0213-1.
Pełny tekst źródłaZHONG, S., S. ALPAY, Z. G. BAN i J. V. MANTESE. "DIELECTRIC PERMITTIVITY AND PYROELECTRIC RESPONSE OF COMPOSITIONALLY GRADED FERROELECTRICS". Integrated Ferroelectrics 71, nr 1 (lipiec 2005): 1–9. http://dx.doi.org/10.1080/10584580590965005.
Pełny tekst źródłaSbrockey, N. M., M. W. Cole, T. S. Kalkur, M. Luong, J. E. Spanier i G. S. Tompa. "MOCVD Growth of Compositionally Graded BaxSr1-xTiO3 Thin Films". Integrated Ferroelectrics 126, nr 1 (styczeń 2011): 21–27. http://dx.doi.org/10.1080/10584587.2011.574975.
Pełny tekst źródłaMatsumoto, Yuji, Shingo Maruyama i Kenichi Kaminaga. "Compositionally graded crystals as a revived approach for new crystal engineering for the exploration of novel functionalities". CrystEngComm 24, nr 13 (2022): 2359–69. http://dx.doi.org/10.1039/d2ce00041e.
Pełny tekst źródłaJia, Mingyong, Fei Chen, Yueqi Wu, Like Xu, Qiang Shen, Nan Jiang i Jian Sun. "Microstructure and shear fracture behavior of Mo/AlN/Mo symmetrical compositionally graded materials". Materials Science and Engineering: A 834 (luty 2022): 142591. http://dx.doi.org/10.1016/j.msea.2021.142591.
Pełny tekst źródłaJandl, Adam, Mayank T. Bulsara i Eugene A. Fitzgerald. "Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates". Journal of Applied Physics 115, nr 15 (21.04.2014): 153503. http://dx.doi.org/10.1063/1.4871289.
Pełny tekst źródłaAdikary, S. U., i H. L. W. Chan. "Compositionally graded BaxSr1−xTiO3 thin films for tunable microwave applications". Materials Chemistry and Physics 79, nr 2-3 (kwiecień 2003): 157–60. http://dx.doi.org/10.1016/s0254-0584(02)00255-9.
Pełny tekst źródłaSakai, Joe, José Manuel Caicedo Roque, Pablo Vales-Castro, Jessica Padilla-Pantoja, Guillaume Sauthier, Gustau Catalan i José Santiso. "Control of Lateral Composition Distribution in Graded Films of Soluble Solid Systems A1−xBx by Partitioned Dual-Beam Pulsed Laser Deposition". Coatings 10, nr 6 (1.06.2020): 540. http://dx.doi.org/10.3390/coatings10060540.
Pełny tekst źródłaLi, Xuefei, Jianming Xu, Tieshi Wei, Wenxian Yang, Shan Jin, Yuanyuan Wu i Shulong Lu. "Enhanced Properties of Extended Wavelength InGaAs on Compositionally Undulating Step-Graded InAsP Buffers Grown by Molecular Beam Epitaxy". Crystals 11, nr 12 (20.12.2021): 1590. http://dx.doi.org/10.3390/cryst11121590.
Pełny tekst źródłaAyers, J. E., Tedi Kujofsa, Johanna Raphael i Md Tanvirul Islam. "Recent Advances in the Modeling of Strain Relaxation and Dislocation Dynamics in InGaAs/GaAs (001) Heterostructures". International Journal of High Speed Electronics and Systems 29, nr 01n04 (marzec 2020): 2040005. http://dx.doi.org/10.1142/s0129156420400054.
Pełny tekst źródłaYoon, Jong-Gul. "A New Approach to the Fabrication of Memristive Neuromorphic Devices: Compositionally Graded Films". Materials 13, nr 17 (20.08.2020): 3680. http://dx.doi.org/10.3390/ma13173680.
Pełny tekst źródła