Gotowa bibliografia na temat „Composition of biomass”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Composition of biomass”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Composition of biomass"
Széliová, D., D. Ruckerbauer, S. N. Galleguillos, M. Hanscho i N. Borth. "Determination of CHO biomass composition". New Biotechnology 44 (październik 2018): S144—S145. http://dx.doi.org/10.1016/j.nbt.2018.05.1121.
Pełny tekst źródłaHerout, M., J. Malaťák, L. Kučera i T. Dlabaja. "Biogas composition depending on the type of plant biomass used". Research in Agricultural Engineering 57, No. 4 (14.12.2011): 137–43. http://dx.doi.org/10.17221/41/2010-rae.
Pełny tekst źródłaSUBEKTI, NIKEN, Priyantini Widiyaningrum, Dodi Nandika i Dedy Duryadi Solihin. "COLONY COMPOSITION AND BIOMASS OF MACROTERMES GILVUS HAGEN (BLATTODEA: TERMITIDAE) IN INDONESIA". IIUM Engineering Journal 20, nr 1 (1.06.2019): 24–28. http://dx.doi.org/10.31436/iiumej.v20i1.1032.
Pełny tekst źródłaMachado, Henrique, Ana F. Cristino, Sofia Orišková i Rui Galhano dos Santos. "Bio-Oil: The Next-Generation Source of Chemicals". Reactions 3, nr 1 (28.01.2022): 118–37. http://dx.doi.org/10.3390/reactions3010009.
Pełny tekst źródłaSari, Yessie W., Utami Syafitri, Johan P. M. Sanders i Marieke E. Bruins. "How biomass composition determines protein extractability". Industrial Crops and Products 70 (sierpień 2015): 125–33. http://dx.doi.org/10.1016/j.indcrop.2015.03.020.
Pełny tekst źródłaVollenweider, Richard A. "Elemental and biochemical composition of plankton biomass; some comments and explorations". Archiv für Hydrobiologie 105, nr 1 (23.03.1989): 11–29. http://dx.doi.org/10.1127/archiv-hydrobiol/105/1989/11.
Pełny tekst źródłaParmar, Kavita. "Biomass- An Overview on Composition Characteristics and Properties". IRA-International Journal of Applied Sciences (ISSN 2455-4499) 7, nr 1 (10.05.2017): 42. http://dx.doi.org/10.21013/jas.v7.n1.p4.
Pełny tekst źródłaRiyanto, Hendi, Toto Hardianto, Willy Adriansyah i Gavriel Y. Jeffry. "Studi Termodinamika Pembakaran Kombinasi Batu Bara dan Biomassa Limbah". JMPM (Jurnal Material dan Proses Manufaktur) 5, nr 2 (17.03.2022): 82–90. http://dx.doi.org/10.18196/jmpm.v5i2.13903.
Pełny tekst źródłaZinicovscaia, Inga, Liliana Cepoi, Ludmila Rudi, Tatiana Chiriac, Nikita Yushin i Dmitrii Grozdov. "Arthrospira platensis as Bioremediator of Rhenium Mono- and Polymetallic Synthetic Effluents". Microorganisms 10, nr 11 (26.10.2022): 2109. http://dx.doi.org/10.3390/microorganisms10112109.
Pełny tekst źródłaStolcvová, J., i A. Honěk. "Early weed succession on an abandoned field: vegetation composition and production of biomass". Plant Protection Science 35, No. 2 (1.01.1999): 71–76. http://dx.doi.org/10.17221/9679-pps.
Pełny tekst źródłaRozprawy doktorskie na temat "Composition of biomass"
Rodriguez, Indalesio. "Composition related effects on thermal reactivity of organic feedstocks /". Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/9895.
Pełny tekst źródłaBrereton, Nicholas James Beresford. "SRC willow development, biomass composition and biofuel potential". Thesis, Imperial College London, 2011. http://hdl.handle.net/10044/1/6920.
Pełny tekst źródłaCromar, Nancy Judith. "Composition of biomass and computer modelling of high rate algal ponds". Thesis, Edinburgh Napier University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.394903.
Pełny tekst źródłaRABEMANOLONTSOA, HARIFARA F. "QUANTIFICATION OF CHEMICAL COMPOSITION FOR VARIOUS BIOMASS SPECIES AS BIOREFINERY FEEDSTOCKS". Kyoto University, 2012. http://hdl.handle.net/2433/157392.
Pełny tekst źródłaRigdon, Anne R. "Coverage impacts biomass composition, conversion to ethanol yields and microbial communities during storage". Diss., Kansas State University, 2013. http://hdl.handle.net/2097/16541.
Pełny tekst źródłaDepartment of Grain Science and Industry
Dirk E. Maier
Increased mandates for the production of transportation fuels from renewable resources have thrust the conversion of lignocellulosic biomass, e.g., energy crops and agricultural residues, to ethanol into commercial production. The conversion of biomass to ethanol has been implemented; transportation and storage logistics are still obstacles to overcome by industry. Limited harvest windows throughout the year necessitate extended periods of biomass storage to maintain a consistent, year-round supply to the biorefinery. Sorghum biomass stored with no coverage (NN), covered with tarp (NT), wrapped in plastic (PN) and covered with a tarp and wrapped in plastic (PT) for six months was analyzed for changes in biomass components—cellulose, hemicellulose and lignin, cellulose and hemicellulose degrading enzymes, and conversion to ethanol yields. Treatment NN had increased enzyme activity, and reduced cellulose content and ethanol yields; while biomass covered maintained enzyme activity, cellulose content and ethanol yields. Sequencing of the Large SubUnit (LSU) region and the internal transcribed spacer (ITS) regions of ribosomal RNA gene gave consistent results of fungal community dynamics in biomass stored as previously described. Fungal community richness and diversity increased, while evenness decreased in uncovered biomass during storage. Covered and uncovered storage treatments and over time were found to exhibit distinctly different fungal communities. In contrast, bacterial communities were found to be unresponsive to storage treatments and durations. Cladosporium, Alternaria and Cryptococcus were found to be the most abundant in the stored biomass. Covering of biomass strongly limits the arrival and establishment of new fungal propagules in stored biomass, reducing biomass degradation by these often pathogenic, saprobic or endophytic communities. Overall, covering of biomass during storage is essential for optimal substrate retention for downstream processing into ethanol. In addition, storage and transportation logistics of three real-world scenarios were evaluated for the conversion of wheat straw, corn stover and sorghum stalks residues to ethanol at a biorefinery located in Southwest Kansas. Economic evaluation revealed that transport and storage of residues at satellite storage facilities was most economical for farmers and would create opportunity for the operation of profitable facilities that would supply the local biorefinery on demand throughout the year.
Mbambo, Sifiso Walter. "Scales of variability of phytoplankton composition and biomass in Algoa Bay, South Africa". Master's thesis, University of Cape Town, 2014. http://hdl.handle.net/11427/9193.
Pełny tekst źródłaThis study investigated the variability of environmental drivers of phytoplankton communities and biomass at different time scales in Algoa Bay. This research was motivated by Pacific oyster culturing at an Algoa Bay oyster farm. Time series of winds, sea surface temperatures (SSTs) and fluorescence were presented for the period from September/October 2010 to May/June 2012. The time series showed strong seasonal and interannual variability in the winds and SSTs. SSTs ranged from 12.5–25.5°C with a mean (±S.D.) of 18.4 ± 2.3°C. The dominance of south-easterly and south-westerly winds in summer of 2010/11 resulted in cooler temperatures and higher chlorophyll-a concentrations than were found in 2011/12. The summer of 2011/12 had non-persistent south-westerly winds that lead to warm temperatures and low chlorophyll-a concentrations. Two short field trips in early summer 2011 and early autumn 2012 sampled physical, chemical and biological variables. There was minor variability in the winds during these sampling periods and little spatial variability in SST. However, there were spatial differences in nutrient concentrations and chlorophyll-a distributions. The sampling trip in early summer 2011 found a strong thermocline at a depth of approximately 15 m, and SST ranged between 13.5 and 21°C. In early autumn 2012, deep water mixing was evident when the thermocline dropped to about 30 m, with a range of SSTs from 16.5–21°C. Temperature and nutrient values were significantly correlated (at p < 0.001) for NO3, PO4, and SiO4 in both field trips. Phytoplankton community structure in early summer 2011 showed a 30% level of similarity in grouping of species for stations closest to the shore, which had depleted NO3 concentrations. There was a dominance of dinoflagellates of Gonyaulax polygramma and other species, which are known for creating hypoxic conditions in the water column, leading to shellfish mortalities. In early autumn 2012 there was a strong grouping of samples at a 50% level of similarity alongshore, at stations with high NO3 concentrations. In this period pennate diatoms of Pseudo-nitzschia sp. were abundant; this genus has been reported to produce the neurotoxin, domoic acid. Variable environmental conditions with low chlorophyll-a concentrations at Algoa Bay’s marine culture site indicate unsuitable conditions for Pacific oyster production.
Kalinauskaitė, Solveiga. "Environmental and energy efficiency evaluation of straw treatment and conversion technology". Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2014. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2014~D_20141223_145125-20389.
Pełny tekst źródłaTyrimų tikslas. Pagrįsti šiaudų biokuro optimalios sudėties paruošimo ir panaudojimo energinėms reikmėms efektyvumą, atlikti šiaudų biokuro paruošimo technologijos energinį vertinimą ir nustatyti deginimo metu išskiriamas emisijas. Tyrimų uždaviniai. Tyrimų tikslui pasiekti numatyta: 1) Atlikti šiaudų biokuro (briketų ir granulių) paruošimo deginimui technologinę analizę; 2) Pagristi kalkių priedo (CaO) įmaišymo į šiaudų biokuro sudetį tikslingumą; 3) Ištirti pagaminto šiaudų biokuro savybes; 4) Nustatyti ir įvertinti šiaudų biokuro deginimo metu išskiriamas emisijas; 5) Įvertinti šiaudų granulių gamybos technologinės įrangos energijos sanaudas.
Saavedra, Rios Carolina del Mar. "Etude des carbones durs issus de la biomasse pour l’application dans les batteries Sodium-ion". Thesis, Université Grenoble Alpes, 2020. https://thares.univ-grenoble-alpes.fr/2020GRALI072.pdf.
Pełny tekst źródłaThe ever-increasing demand for Lithium-ion batteries has raised some concern regarding the supply of the critical raw materials needed for their production, especially the Li, Co, Ni and Cu resources. The Sodium-ion technology appears to be an alternative which potentially uses abundant, and evenly distributed resources, that is able to reduce the cost of the batteries compared to Lithium-ion. However, the commercial intrusion of Sodium-ion batteries is still limited by the development of low-cost and high-performance negative electrode material. The most promising option is a disordered carbonaceous material called hard carbon obtained from high-temperature thermal treatment of organic precursors. Despite its good performance, hard carbon is still more expensive than the graphite used in Lithium-ion batteries, given the high cost of the synthetic precursors. Lignocellulosic biomass has recently attracted attention as a hard carbon precursor, given its renewable nature, accessibility, and low cost. However, the high variability of biomass feedstock, together with the poor yield of the pyrolysis reaction, make their commercial application rather difficult. Moreover, there is no clear understanding of the biomass composition role on the hard carbon properties. The research work presented here is an interdisciplinary approach, aiming to elucidate the biomass composition's impact on the physicochemical and electrochemical properties of the derived hard carbons as well as their synthesis yield. A set of 25 lignocellulosic biomass precursors have been selected for this study. The composition of each biomass precursor, such as the elemental organic and inorganic content, and the macromolecular contents were evaluated in detail. The synthesised hard carbons were characterised by XRD, Raman, SEM, TEM, SAXS, XPS, and galvanostatic cycling techniques. The inorganic content and composition of the precursor, particularly the presence of Si, Ca, and K compounds, was observed to play a critical role in developing the hard carbon structure and surface. Therefore, they have a strong negative impact on hard carbon performances, producing high irreversibility. Because of their low ash-content, coupled with their low cost and environmental impact, precursors such as forestry residues, and some agricultural residues, appeared to be the best compromise for hard carbon application
Maranan, Melchor C. "Rapid assessment of chemical composition, calorific value and specific gravity of hybrid poplar wood using near infrared spectroscopy". Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Summer2006/m%5Fmaranan%5F10704728.pdf.
Pełny tekst źródłaStone, Gayle Louise. "Microplankton Biomass and Composition in Relation to the Gulf Stream Front Off Southeast Florida". NSUWorks, 1997. http://nsuworks.nova.edu/occ_stuetd/320.
Pełny tekst źródłaKsiążki na temat "Composition of biomass"
M, Rowell Roger, Schultz Tor P. 1953-, Narayan Ramani 1949-, American Chemical Society. Cellulose, Paper, and Textile Division. i American Chemical Society Meeting, red. Emerging technologies for materials and chemicals from biomass. Washington, DC: American Chemical Society, 1992.
Znajdź pełny tekst źródłaNalepa, T. F. Abundance, biomass, and species composition of benthic macroinvertebrate populations in Saginaw Bay, Lake Huron, 1987-96. Ann Arbor, MI: Great Lakes Environmental Research Laboratory, 2002.
Znajdź pełny tekst źródłaWheeler, R. M. Proximate composition of seed and biomass from soybean plants grown at different carbon dioxide (CO) concentrations. [Kennedy Space Center, Fla.]: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1990.
Znajdź pełny tekst źródłaGreat Lakes Laboratory for Fisheries and Aquatic Sciences. Effect of habitat degradation on the species composition and biomass of fish in the Great Lakes areas of concern. Burlington, Ont: Great Lakes Laboratory for Fisheries and Aquatic Sciences, 1993.
Znajdź pełny tekst źródłaKenlan, Peter H. Composition and biomass of forest floor vegetation in experimentally acidified paired watersheds at the Bear Brook Watershed in Maine. Orono, Me: Maine Agricultural & Forest Experiment Station, University of Maine, 2009.
Znajdź pełny tekst źródłaJohn, Beebe, i Pacific Northwest Research Station (Portland, Or.), red. Effect of fertilizer applications and grazing exclusion on species composition and biomass in wet meadow restoration in eastern Washington. [Portland, Or.]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 2002.
Znajdź pełny tekst źródłaR, Hinkle Charles, i United States. National Aeronautics and Space Administration., red. Effects of fire on composition, biomass, and nutrients in oak scrub vegetation on John F. Kennedy Space Center, Florida. [Kennedy Space Center, Fla.]: National Aeronautics and Space Administration, John F. Kennedy Space Center, 1987.
Znajdź pełny tekst źródłaLittle, Susan N. Highly stocked coniferous stands on the Olympic Peninsula: Chemical composition and implications for harvest strategy. Portland, Or.]: U.S. Dept. of Agriculture, Forest Service, Pacific Northwest Research Station, 1987.
Znajdź pełny tekst źródłaBartsch, Annette. Die Eisalgenflora des Weddellmeeres (Antarktis): Artenzusammensetzung und Biomasse sowie Ökophysiologie ausgewählter Arten = Sea ice algae of the Weddell Sea (Antarctica) : species composition, biomass, and ecophysiology of selected species. Bremerhaven: Alfred-Wegener-Institut für Polar- und Meeresforschung, 1989.
Znajdź pełny tekst źródłaLittle, Susan N. Highly stocked coniferous stands on the Olympic Peninsula. Portland, OR: Biomass and Energy Project, Pacific Northwest Forest and Range Experiment Station, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "Composition of biomass"
Wertz, Jean-Luc, Philippe Mengal i Serge Perez. "Chemical Composition of Biomass". W Biomass in the Bioeconomy, 35–56. Boca Raton: CRC Press, 2022. http://dx.doi.org/10.1201/9781003308454-5.
Pełny tekst źródłaGusiatin, Zygmunt Mariusz, i Artur Pawłowski. "2 Biomass for fuels – classification and composition". W Biomass for Biofuels, 15–36. CRC Press, Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315226422-4.
Pełny tekst źródłaWetzel, Robert G., i Gene E. Likens. "Composition and Biomass of Phytoplankton". W Limnological Analyses, 147–74. New York, NY: Springer New York, 2000. http://dx.doi.org/10.1007/978-1-4757-3250-4_10.
Pełny tekst źródłaWetzel, Robert G., i Gene E. Likens. "Composition and Biomass of Phytoplankton". W Limnological Analyses, 139–65. New York, NY: Springer New York, 1991. http://dx.doi.org/10.1007/978-1-4757-4098-1_10.
Pełny tekst źródłade Jong, Wiebren. "Biomass Composition, Properties, and Characterization". W Biomass as a Sustainable Energy Source for the Future, 36–68. Hoboken, NJ: John Wiley & Sons, Inc, 2014. http://dx.doi.org/10.1002/9781118916643.ch2.
Pełny tekst źródłaEvans, Robert J., i Thomas A. Milne. "Mass Spectrometry Studies of the Relationship of Pyrolysis Oil Composition to Formation Mechanisms and Feedstock Composition". W Research in Thermochemical Biomass Conversion, 264–79. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2737-7_21.
Pełny tekst źródłaKalita, Pankaj, i Debarshi Baruah. "Investigation of Biomass Gasifier Product Gas Composition and its Characterization". W Coal and Biomass Gasification, 115–49. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7335-9_5.
Pełny tekst źródłaRicci-Silva, Maria Esther, Boniek Gontijo Vaz, Géssica Adriana Vasconcelos, Wanderson Romão, Juliana A. Aricetti, Camila Caldana i Patrícia Verardi Abdelnur. "Mass Spectrometry for Metabolomics and Biomass Composition Analyses". W Analytical Techniques and Methods for Biomass, 115–41. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41414-0_5.
Pełny tekst źródłaMilne, T., F. Agblevor, M. Davis, S. Deutch i D. Johnson. "A Review of the Chemical Composition of Fast-Pyrolysis Oils from Biomass". W Developments in Thermochemical Biomass Conversion, 409–24. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-009-1559-6_32.
Pełny tekst źródłaLai, Wei-chuan, Indalesio Rodriguez i Barbara Krieger-Brockett. "Composition Effects on the Devolatilization Behavior of Biomass and Municipal Solid Waste". W Advances in Thermochemical Biomass Conversion, 818–32. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1336-6_64.
Pełny tekst źródłaStreszczenia konferencji na temat "Composition of biomass"
Holubcik, Michal, i Jozef Jandacka. "Chemical composition in relation with biomass ash structure". W XIX. THE APPLICATION OF EXPERIMENTAL AND NUMERICAL METHODS IN FLUID MECHANICS AND ENERGETICS 2014: Proceedings of the International Conference. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4892704.
Pełny tekst źródłaZAJĄC, Grzegorz, Joanna SZYSZLAK-BARGŁOWICZ, Agnieszka DUDZIAK, Andrzej KURANC i Jacek WASILEWSKI. "Ash Composition and Deposition Tendencies of Selected Biomass Types". W IX International ScientificSymposium "Farm Machinery and Processes Management in Sustainable Agriculture". Departament of Machinery Exploittation and Management of Production Processes, University of Life Sciences in Lublin, 2017. http://dx.doi.org/10.24326/fmpmsa.2017.79.
Pełny tekst źródłaSucipta, Made, Shinji Kimijima, Tae Won Song i Kenjiro Suzuki. "Biomass SOFC-MGT Hybrid System: Effect of Fuel Composition". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97013.
Pełny tekst źródłaEggerstedt, Kyle, Xia Wang, James Leidel i Krzytoff Kobus. "Initial Development of Optimum Biomass Pellets". W ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54464.
Pełny tekst źródłaCHIU, HSUAN-CHAO, i DANIEL SEGRÈ. "COMPARATIVE DETERMINATION OF BIOMASS COMPOSITION IN DIFFERENTIALLY ACTIVE METABOLIC STATES". W Proceedings of the 8th Annual International Workshop on Bioinformatics and Systems Biology (IBSB 2008). IMPERIAL COLLEGE PRESS, 2008. http://dx.doi.org/10.1142/9781848163003_0015.
Pełny tekst źródłaJayasurya Vijayakumar, Gary A Anderson, Stephen P Gent i Anand Rajendran. "Calculation of biomass capacity of Algae based on their elemental composition". W 2013 Kansas City, Missouri, July 21 - July 24, 2013. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2013. http://dx.doi.org/10.13031/aim.20131620717.
Pełny tekst źródłaRahman, Adli Azimi Abdul, Ras Izzati Ismail, AbdulRazak Shaari i Nik Noriman Zulkepli. "Quantification of the torrefaction influenceon lignin composition of Khaya senegalensis biomass". W THE PROCEEDING OF THE 1ST INTERNATIONAL CONFERENCE OF CHEMICAL SCIENCE, ENGINEERING AND TECHNOLOGY. AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0118142.
Pełny tekst źródłaShi, Yunye, Tejasvi Sharma, Guiyan Zang i Albert Ratner. "Biomass Gasification in a Pilot-Scale Gasifier". W ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38958.
Pełny tekst źródłaKukoleva, S. S. "Biochemical composition, yield and energy efficiency of aboveground biomass of the sudan grass". W Agrobiotechnology-2021. Publishing house of RGAU - MSHA, 2021. http://dx.doi.org/10.26897/978-5-9675-1855-3-2021-138.
Pełny tekst źródłaJangale, Vilas, Alexei Saveliev, Serguei Zelepouga, Vitaly Gnatenko i John Pratapas. "A Real-Time Method for Determining the Composition and Heating Value of Opportunity Fuel Blends". W ASME 2012 Internal Combustion Engine Division Spring Technical Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/ices2012-81111.
Pełny tekst źródłaRaporty organizacyjne na temat "Composition of biomass"
Petzold, Christopher, Jennifer Bragg i Ai Oikawa. Generation of Switchgrass Plants with Optimized Biomass Composition for Biofuel Production. Office of Scientific and Technical Information (OSTI), maj 2018. http://dx.doi.org/10.2172/1462698.
Pełny tekst źródłaShih, Chien-Ju. Determination of saccharides and ethanol from biomass conversion using Raman spectroscopy: Effects of pretreatment and enzyme composition. Office of Scientific and Technical Information (OSTI), styczeń 2010. http://dx.doi.org/10.2172/985314.
Pełny tekst źródłaRuberu, Thanthrige P. Molecular level control of nanoscale composition and morphology: Toward photocatalytic nanocomposites for solar-to-chemical energy conversion of biomass. Office of Scientific and Technical Information (OSTI), styczeń 2013. http://dx.doi.org/10.2172/1116717.
Pełny tekst źródłaKirst, Matias. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides. Office of Scientific and Technical Information (OSTI), kwiecień 2014. http://dx.doi.org/10.2172/1319490.
Pełny tekst źródłaKirst, Matias. A systems biology, whole-genome association analysis of the molecular regulation of biomass growth and composition in Populus deltoides. Office of Scientific and Technical Information (OSTI), kwiecień 2015. http://dx.doi.org/10.2172/1322865.
Pełny tekst źródłaBeebe, John, Richard Everett, George Scherer i Carl Davis. Effect of fertilizer applications and grazing exclusion on species composition and biomass in wet meadow restoration in eastern Washington. Portland, OR: U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station, 2002. http://dx.doi.org/10.2737/pnw-rp-542.
Pełny tekst źródłaJohnston, J. W. Jr. Evaluation of the potential for using old-field vegetation as an energy feedstock: Biomass yield, chemical composition, environmental concerns, and economics. Office of Scientific and Technical Information (OSTI), lipiec 1990. http://dx.doi.org/10.2172/6467844.
Pełny tekst źródłaVerity, Peter G., i Gustav-Adolf Paffenhofer. Contribution of zooplankton to the biomass composition and fate of living and detritalpoc on the Cape Hatteras ocean margin. Final report. Office of Scientific and Technical Information (OSTI), marzec 2000. http://dx.doi.org/10.2172/761131.
Pełny tekst źródłaMosjidis, J. A. Variability for Biomass Production and Plant Composition in Sericea Lespedeza Germplasm. Final report on a Field and Laboratory Research Program, September 30, 1990--December 31, 1991. Office of Scientific and Technical Information (OSTI), maj 1993. http://dx.doi.org/10.2172/10167118.
Pełny tekst źródłaSukenik, Assaf, Paul Roessler i John Ohlrogge. Biochemical and Physiological Regulation of Lipid Synthesis in Unicellular Algae with Special Emphasis on W-3 Very Long Chain Lipids. United States Department of Agriculture, styczeń 1995. http://dx.doi.org/10.32747/1995.7604932.bard.
Pełny tekst źródła