Gotowa bibliografia na temat „Composite materials Al”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Composite materials Al”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Composite materials Al"
Khomenko, E. V., N. I. Grechanyuk i V. Z. Zatovsky. "Modern composite materials for switching and welding equipment. information 1. powdered composite materials". Paton Welding Journal 2015, nr 10 (28.10.2015): 36–42. http://dx.doi.org/10.15407/tpwj2015.10.06.
Pełny tekst źródłaÖztaş, Saniye Karaman. "Fiber Reinforced Composite Materials in Architecture". Applied Mechanics and Materials 789-790 (wrzesień 2015): 1171–75. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.1171.
Pełny tekst źródłaLagerlof, K. P. D. "Transmission electron microscopy of composite materials". Proceedings, annual meeting, Electron Microscopy Society of America 46 (1988): 1012–15. http://dx.doi.org/10.1017/s0424820100107125.
Pełny tekst źródłaKala, Shiva Kumar, i Chennakesava Reddy Alavala. "Enhancement of Mechanical and Wear Behavior of ABS/Teflon Composites". Trends in Sciences 19, nr 9 (8.04.2022): 3670. http://dx.doi.org/10.48048/tis.2022.3670.
Pełny tekst źródłaKhosravani, Mohammad Reza. "Composite Materials Manufacturing Processes". Applied Mechanics and Materials 110-116 (październik 2011): 1361–67. http://dx.doi.org/10.4028/www.scientific.net/amm.110-116.1361.
Pełny tekst źródłaIbraimov, T., i Y. Tashpolotov. "Technology for Producing Composite Materials Based on Multi-component Man-generic Raw Materials". Bulletin of Science and Practice 6, nr 12 (15.12.2020): 274–80. http://dx.doi.org/10.33619/2414-2948/61/29.
Pełny tekst źródłaChen, Jieng-Chiang, i Bo-Yan Huang. "Flame-retardant corrugated paper/epoxy composite materials". Modern Physics Letters B 33, nr 14n15 (28.05.2019): 1940004. http://dx.doi.org/10.1142/s0217984919400049.
Pełny tekst źródłaYamamoto, Tetsuya, Yuya Takahashi i Naoya Toyoda. "Dispersion of Nano-materials in Polymer Composite Materials". MATEC Web of Conferences 333 (2021): 11003. http://dx.doi.org/10.1051/matecconf/202133311003.
Pełny tekst źródłaYamamoto, Tetsuya, Yuya Takahashi i Naoya Toyoda. "Dispersion of Nano-materials in Polymer Composite Materials". MATEC Web of Conferences 333 (2021): 11003. http://dx.doi.org/10.1051/matecconf/202133311003.
Pełny tekst źródłaKalizhanova, Aliya, Ainur Kozbakova, Bakhyt Eralieva, Murat Kunelbayev i Zhalau Aitkulov. "RESEARCH AND ANALYSIS OF THE PROPERTIES OF COMPOSITE MATERIALS. DEFINITION AND CLASSIFICATION OF COMPOSITE MATERIALS". Вестник КазАТК 128, nr 5 (19.10.2023): 131–40. http://dx.doi.org/10.52167/1609-1817-2023-128-5-131-140.
Pełny tekst źródłaRozprawy doktorskie na temat "Composite materials Al"
Freitas, Ricardo Luiz Barros de [UNESP]. "Fabricação, caracterização e aplicações do compósito PZT/PVDF". Universidade Estadual Paulista (UNESP), 2012. http://hdl.handle.net/11449/100281.
Pełny tekst źródłaConselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Um material compósito é constituído pela combinação de dois ou mais materiais, onde se procura sintetizar um novo material multifásico, e que abrigue as melhores características individuais de cada um de seus constituintes. Compósitos de polímeros (matriz) e ferroelétricos (inclusões) podem manifestar piezoeletricidade, ou seja, a produção de uma resposta elétrica devido a uma excitação mecânica, e vice-versa. Nesta tese o material polimérico usado para preparar os filmes ou lâminas de nanocompósitos é o PVDF, e, o material cerâmico é formado por nanopartículas de PZT. Ambos os materiais são dielétricos, porém, com características muito distintas (por exemplo, o PVDF tem aproximadamente 1/4 da densidade e 1/250 da constante dielétrica do PZT). O PZT é muito utilizado em transdutores, principalmente devido aos seus elevados coeficientes piezoelétricos, contudo, é quebradiço e sofre desgaste quando empregado na forma de filmes ou lâminas. Por outro lado, o PVDF é um polímero piezoelétrico que apresenta grande flexibilidade e excelentes resistências mecânica e química, porém, seus coeficientes piezoelétricos são apenas moderados. A fim de se aumentar a flexibilidade do PZT, mistura-se o pó cerâmico, na forma de nanopartículas, com o PVDF, também pulverizado. Na tese, evidencia-se que o compósito constituído por esta combinação cerâmica-polímero proporciona uma nova classe de materiais funcionais com grande potencial de aplicação, por terem combinadas a resistência e rigidez das cerâmicas, e, a elasticidade, flexibilidade, baixa densidade e elevada resistência a ruptura mecânica dos polímeros. O novo material tem grande resistência a choques mecânicos, flexibilidade, maleabilidade, e, principalmente, coeficientes piezoelétricos relativamente elevados. Amostras do compósito...
A composite material is constituted by the combination of two or more materials, which synthesizes a new multiphase material, and has the best individual characteristics of each of its constituents. Polymer composites (matrix) and ferroelectric (inclusions) can express piezoelectricity, i.e. the production of an electrical response due to a mechanical excitation, and vice versa. In this thesis the polymeric material used to prepare the films or slides of nanocomposites is the PVDF, and, ceramic material is formed by PZT nanoparticles. Both materials are dielectrics, however, with very different characteristics (for example, the PVDF is approximately 1/4 density and 1/250 relative permittivity from PZT). The PZT is widely used in transducers, mainly due to their high piezoelectric coefficients, however, is brittle and suffers wear and tear when employed in the form of films or slides. On the other hand, the PVDF is a piezoelectric polymer that offers great flexibility and excellent mechanical and chemical resistances, however, its piezoelectric coefficients are only moderate. In order to increase the flexibility of PZT, ceramic powder is mix, in the form of nanoparticles, with PVDF, also sprayed. In theory, it becomes evident that composite consisting of this ceramic- polymer combination delivers a new class of functional materials with great potential for application, because they combine the strength and rigidity of ceramics, and elasticity, flexibility, low density and high resistance to mechanical disruption of polymers. The new material has great resistance to mechanical shock, flexibility, suppleness, and, primarily, relatively high piezoelectric coefficients. PZT/PVDF composite samples were fabricated and characterized aiming to applications such as: piezoelectric actuators, acoustic emission detectors, and energy... (Complete abstract click electronic access below)
Palmer, Nathan Reed. "Smart Composites evaluation of embedded sensors in composite materials /". Thesis, Montana State University, 2009. http://etd.lib.montana.edu/etd/2009/palmer/PalmerN0809.pdf.
Pełny tekst źródłaKarlsson, Johan. "Composite material in car hood : Investigation of possible sandwich materials". Thesis, Karlstads universitet, Fakulteten för hälsa, natur- och teknikvetenskap (from 2013), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-45633.
Pełny tekst źródłaPodnos, Eugene Grigorievich. "Application of fictitious domain method to analysis of composite materials /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.
Pełny tekst źródłaYan, Chang (Karen). "On homogenization and de-homogenization of composite materials /". Philadelphia, Pa. : Drexel University, 2003. http://dspace.library.drexel.edu/handle/1860/246.
Pełny tekst źródłaSymington, Mark C. "Cellulose based composite materials". Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.501684.
Pełny tekst źródłaDyer, K. P. "Fatigue of composite materials". Thesis, Swansea University, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.636755.
Pełny tekst źródłaYang, Heechun. "Modeling the processing science of thermoplastic composite tow prepreg materials". Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/17217.
Pełny tekst źródłaGambone, Livio R. "The effect of R-ratio on the mode II fatigue delamination growth of unidirectional carbon/epoxy composites". Thesis, University of British Columbia, 1991. http://hdl.handle.net/2429/29968.
Pełny tekst źródłaApplied Science, Faculty of
Materials Engineering, Department of
Graduate
Counts, William Arthur. "Mechanical behavior of bolted composite joints at elevated temperature". Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/17315.
Pełny tekst źródłaKsiążki na temat "Composite materials Al"
Koohgilani, Mehran. Advanced composite materials: Composite material's history. Poole: Bournemouth University, 2001.
Znajdź pełny tekst źródłaNational Institute for Aviation Research (U.S.), red. Composite materials handbook. [Warrendale, Pa.]: SAE International on behalf of CMH-17, a division of Wichita State University, 2012.
Znajdź pełny tekst źródłaInstitute of Materials (London, England), red. Engineering composite materials. Wyd. 2. London: IOM, 1999.
Znajdź pełny tekst źródłaNational Institute for Aviation Research (U.S.), red. Composite materials handbook: Polymer matrix composites, materials properties. Warrendale, Pa.]: SAE International on behalf of CMH-17, a division of Wichita State University, 2018.
Znajdź pełny tekst źródłaNielsen, Lauge Fuglsang. Composite Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-27680-7.
Pełny tekst źródłaChawla, Krishan K. Composite Materials. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4757-2966-5.
Pełny tekst źródłaBerthelot, Jean-Marie. Composite Materials. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-0527-2.
Pełny tekst źródłaKar, Kamal K., red. Composite Materials. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-662-49514-8.
Pełny tekst źródłaChawla, Krishan K. Composite Materials. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-28983-6.
Pełny tekst źródłaChawla, Krishan Kumar. Composite Materials. New York, NY: Springer New York, 1987. http://dx.doi.org/10.1007/978-1-4757-3912-1.
Pełny tekst źródłaCzęści książek na temat "Composite materials Al"
Ambrosio, L., G. Carotenuto i L. Nicolais. "Composite materials". W Handbook of Biomaterial Properties, 214–69. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-5801-9_18.
Pełny tekst źródłaAskeland, Donald R. "Composite Materials". W The Science and Engineering of Materials, 170–83. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0443-2_16.
Pełny tekst źródłaGatewood, B. E. "Composite materials". W Virtual Principles in Aircraft Structures, 582–610. Dordrecht: Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-009-1165-9_16.
Pełny tekst źródłaJohn, Vernon. "Composite Materials". W Introduction to Engineering Materials, 295–302. London: Palgrave Macmillan UK, 1992. http://dx.doi.org/10.1007/978-1-349-21976-6_21.
Pełny tekst źródłaRamírez, Alejandro Manzano, i Enrique V. Barrera. "Composite Materials". W Synthesis and Properties of Advanced Materials, 149–94. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6339-6_6.
Pełny tekst źródłaAskeland, Donald R. "Composite Materials". W The Science and Engineering of Materials, 549–94. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4899-2895-5_16.
Pełny tekst źródłaBiermann, Dirk. "Composite Materials". W CIRP Encyclopedia of Production Engineering, 1–5. Berlin, Heidelberg: Springer Berlin Heidelberg, 2018. http://dx.doi.org/10.1007/978-3-642-35950-7_6396-4.
Pełny tekst źródłaJones, F. R. "Composite materials". W Chemistry and Technology of Epoxy Resins, 256–302. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2932-9_8.
Pełny tekst źródłaBiermann, Dirk. "Composite Materials". W CIRP Encyclopedia of Production Engineering, 311–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2019. http://dx.doi.org/10.1007/978-3-662-53120-4_6396.
Pełny tekst źródłaGdoutos, Emmanuel E. "Composite Materials". W Fracture Mechanics, 333–52. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35098-7_11.
Pełny tekst źródłaStreszczenia konferencji na temat "Composite materials Al"
Dinesh, A. "Development of Self-Sensing Cement Composite Using Nanomaterials for Structural Health Monitoring of Concrete Columns – A Comprehensive Review". W Sustainable Materials and Smart Practices. Materials Research Forum LLC, 2022. http://dx.doi.org/10.21741/9781644901953-23.
Pełny tekst źródłaKirk, G. E. "Composite Materials for Future Aeroengines". W ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-313.
Pełny tekst źródłaPrabhuram, T., V. Somurajan i S. Prabhakaran. "Hybrid composite materials". W International Conference on Frontiers in Automobile and Mechanical Engineering (FAME 2010). IEEE, 2010. http://dx.doi.org/10.1109/fame.2010.5714794.
Pełny tekst źródłaSobey, Daniel L., Marcus K. Chao i David L. Garrett. "Interior Composite Materials". W Passenger Car Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/851632.
Pełny tekst źródłaDayananthan, C., i R. Manikandan. "Nano composite materials". W International Conference on Nanoscience, Engineering and Technology (ICONSET 2011). IEEE, 2011. http://dx.doi.org/10.1109/iconset.2011.6167927.
Pełny tekst źródłaRazavi Setvati, Mahdi, Zahiraniza Mustaffa, Nasir Shafiq i Zubair Imam Syed. "A Review on Composite Materials for Offshore Structures". W ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23542.
Pełny tekst źródłaRusnakova, S., D. Kucerka, S. Husar, R. Hrmo, M. Kucerkova i V. Rusnak. "Education in Composite Materials". W 2013 International Conference on Interactive Collaborative Learning (ICL). IEEE, 2013. http://dx.doi.org/10.1109/icl.2013.6644572.
Pełny tekst źródłaHartman, Paul, i David Erb. "Pultruded Composite Ballistic Materials". W 44th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2003. http://dx.doi.org/10.2514/6.2003-1556.
Pełny tekst źródłaTillmann, W., E. Vogli, K. Weidenmann i K. Fleck. "Reinforced Lightweight Composite Materials". W ITSC2005, redaktor E. Lugscheider. Verlag für Schweißen und verwandte Verfahren DVS-Verlag GmbH, 2005. http://dx.doi.org/10.31399/asm.cp.itsc2005p1064.
Pełny tekst źródłaKhoramishad, Hadi, i Mohammad Vahab Mousavi. "Hybrid polymer composite materials". W THE 7TH INTERNATIONAL CONFERENCE ON APPLIED SCIENCE AND TECHNOLOGY (ICAST 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5123100.
Pełny tekst źródłaRaporty organizacyjne na temat "Composite materials Al"
Lee, Max. Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1996. http://dx.doi.org/10.21236/ada316048.
Pełny tekst źródłaMcCullough, Roy L., i Diane S. Kukich. Composites 2000: An International Symposium on Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, czerwiec 2000. http://dx.doi.org/10.21236/ada384778.
Pełny tekst źródłaWadley, H. N. G., J. A. Simmons, R. B. Clough, F. Biancaniello, E. Drescher-Krasicka, M. Rosen, T. Hsieh i K. Hirschman. Composite materials interface characterization. Gaithersburg, MD: National Bureau of Standards, 1988. http://dx.doi.org/10.6028/nbs.ir.87-3630.
Pełny tekst źródłaSpangler, Lee. Composite Materials for Optical Limiting. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2001. http://dx.doi.org/10.21236/ada396124.
Pełny tekst źródłaMagness, F. H. Joining of polymer composite materials. Office of Scientific and Technical Information (OSTI), listopad 1990. http://dx.doi.org/10.2172/6334940.
Pełny tekst źródłaAnderson, D. P., i B. P. Rice. Intrinsically Survivable Structural Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2000. http://dx.doi.org/10.21236/ada387309.
Pełny tekst źródłaAnderson, David P., Chenggang Chen, Larry Cloos i Thao Gibson. Intrinsically Survivable Structural Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, luty 2001. http://dx.doi.org/10.21236/ada388001.
Pełny tekst źródłaPapanicolaou, G. C. Effective Behavior of Composite Materials. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 1985. http://dx.doi.org/10.21236/ada158941.
Pełny tekst źródłaWang, S. S., S. S. Wang i Dale W. Fitting. Composite materials for offshore operations. Gaithersburg, MD: National Institute of Standards and Technology, 1995. http://dx.doi.org/10.6028/nist.sp.887.
Pełny tekst źródłaUnroe, Marilyn R. Adaptive, Active and Multifunctional Composite and Hybrid Materials Program: Composite and Hybrid Materials ERA. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2014. http://dx.doi.org/10.21236/ada600876.
Pełny tekst źródła