Gotowa bibliografia na temat „Compliant Mechanism Designs”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Compliant Mechanism Designs”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Compliant Mechanism Designs"
Valdivia y Alvarado, Pablo, i Kamal Youcef-Toumi. "Design of Machines With Compliant Bodies for Biomimetic Locomotion in Liquid Environments". Journal of Dynamic Systems, Measurement, and Control 128, nr 1 (19.09.2005): 3–13. http://dx.doi.org/10.1115/1.2168476.
Pełny tekst źródłaKrishnan, G., C. Kim i S. Kota. "Building block method: a bottom-up modular synthesis methodology for distributed compliant mechanisms". Mechanical Sciences 3, nr 1 (28.03.2012): 15–23. http://dx.doi.org/10.5194/ms-3-15-2012.
Pełny tekst źródłaFowler, R. M., L. L. Howell i S. P. Magleby. "Compliant space mechanisms: a new frontier for compliant mechanisms". Mechanical Sciences 2, nr 2 (20.10.2011): 205–15. http://dx.doi.org/10.5194/ms-2-205-2011.
Pełny tekst źródłaHao, Guangbo, i Haiyang Li. "Conceptual designs of multi-degree of freedom compliant parallel manipulators composed of wire-beam based compliant mechanisms". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 229, nr 3 (15.05.2014): 538–55. http://dx.doi.org/10.1177/0954406214535925.
Pełny tekst źródłaOtomori, M., T. Yamada, K. Izui i S. Nishiwaki. "Level set-based topology optimisation of a compliant mechanism design using mathematical programming". Mechanical Sciences 2, nr 1 (10.05.2011): 91–98. http://dx.doi.org/10.5194/ms-2-91-2011.
Pełny tekst źródłaSönmez, Ümit. "Introduction to Compliant Long Dwell Mechanism Designs Using Buckling Beams and Arcs". Journal of Mechanical Design 129, nr 8 (2.07.2006): 831–43. http://dx.doi.org/10.1115/1.2735337.
Pełny tekst źródłaAhmad, Mohd Nizam, Karimah Mat i Wan Mansor Wan Muhamad. "A Novel Design of Car Wiper Using Compliant Mechanism Method". Applied Mechanics and Materials 465-466 (grudzień 2013): 39–43. http://dx.doi.org/10.4028/www.scientific.net/amm.465-466.39.
Pełny tekst źródłaKit Yee, Sara Lee, Lam Yeap Sheng i Tan Yong Li. "A Preliminary Study on the Compliant Stretcher Mechanism of Canopy". E3S Web of Conferences 243 (2021): 02007. http://dx.doi.org/10.1051/e3sconf/202124302007.
Pełny tekst źródłaGuo, Jincheng, i Huaping Tang. "Stiffness-Oriented Structure Topology Optimization for Hinge-Free Compliant Mechanisms Design". Applied Sciences 11, nr 22 (16.11.2021): 10831. http://dx.doi.org/10.3390/app112210831.
Pełny tekst źródłaMeng, Qiaoling, Zhongzhe Chen, Haolun Kang, Zhijia Shen i Hongliu Yu. "Analytical Modeling and Application for Semi-Circular Notch Flexure Hinges". Applied Sciences 13, nr 16 (15.08.2023): 9248. http://dx.doi.org/10.3390/app13169248.
Pełny tekst źródłaRozprawy doktorskie na temat "Compliant Mechanism Designs"
Dearden, Jason Lon. "Design and Analysis of Two Compliant Mechanism Designs for Use in Minimally Invasive Surgical Instruments". BYU ScholarsArchive, 2016. https://scholarsarchive.byu.edu/etd/7383.
Pełny tekst źródłaJensen, Brian D. "Identification of Macro- and Micro-Compliant Mechanism Configurations Resulting in Bistable Behavior". BYU ScholarsArchive, 2003. https://scholarsarchive.byu.edu/etd/83.
Pełny tekst źródłaMackay, Allen Boyd. "Large-displacement linear-motion compliant mechanisms /". Diss., CLICK HERE for online access, 2007. http://contentdm.lib.byu.edu/ETD/image/etd1845.pdf.
Pełny tekst źródłaDelimont, Isaac L. "Compliant Joints Suitable for Use as Surrogate Folds". BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/4231.
Pełny tekst źródłaLandsiedel, Nathan M. 1977. "Design of a formed - folded compliant layered mechanism". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/30312.
Pełny tekst źródłaIncludes bibliographical references (p. 107-108).
The purpose of this research was to investigate a new method and a new practice of engineering low-cost, actuatable mechanisms. This work investigates the theory and practice which are needed to lay a foundation for the design of actuated mechanisms that consist of discrete functional sheets. The various requirements of traditional, functional components are embodied in sheets, or layers, of material rather than in discrete components (e.g. actuators, links, gears, etc...). The functional layers are designed to be bonded together in a way that forms an actuatable mechanism. These compliant layered mechanisms, CLMs, consist of four layers: (1) a skeleton cut from a single sheet of material that provides structural elements and compliant amplification mechanisms, (2) actuation, (3) control circuitry, and (4) sensors or other functional components as needed. This thesis presents the design, modeling, fabrication, and experimental validation of the CLM concept. Precision machines with integrated stiffness characteristics, actuation, and control circuitry are realized through forming / folding the CLM sheet. The CLM is implemented in a five axis nano-manipulator capable of a range of hundreds of microns and a resolution of tens of nanometers. The CLM manipulator is modeled using a node/beam stiffness matrix in CoMeTTM. The performance of the manipulator and the accuracy of the model are verified through a series of experiments in which the manipulator is made to translate (Y and Z) and rotate (OX). The skeleton of the CLM utilizes thin elliptical compliant amplifier mechanisms (TECAs) to provide amplification and guidance of the actuators.
(cont.) The behavior of the TECA is shown to be governed by the transmission ratio (amplification) and the ratio of the width to thickness of the flexure elements. A parametric design tool was developed enabling designers to predict and control the performance of TECAs subjected to a combination of desired and undesired forces through optimization of these key ratios. The CLM offers advantages in applications beyond manipulation which currently require costly mechanisms based on discrete functional components. Two such applications are morphing structures such as the Smart Wing under development by NASA and DARPA [1], and energy transducing and damping mechanisms.
by Nathan M. Landsiedel.
S.M.
Zirbel, Shannon Alisa. "Compliant Mechanisms for Deployable Space Systems". BYU ScholarsArchive, 2014. https://scholarsarchive.byu.edu/etd/5612.
Pełny tekst źródłaLan, Chao-Chieh. "Computational Models for Design and Analysis of Compliant Mechanisms". Diss., Georgia Institute of Technology, 2005. http://hdl.handle.net/1853/14076.
Pełny tekst źródłaStratton, Eric M. "Design and Analysis of a Compliant Mechanism Spinal Implant". BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2441.
Pełny tekst źródłaPendleton, Tyler M. "Design and Fabrication of Rotationally Tristable Compliant Mechanisms". Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1552.pdf.
Pełny tekst źródłaMackay, Allen B. "Large-Displacement Linear-Motion Compliant Mechanisms". BYU ScholarsArchive, 2007. https://scholarsarchive.byu.edu/etd/901.
Pełny tekst źródłaKsiążki na temat "Compliant Mechanism Designs"
Compliant mechanisms: Design of flexure hinges. Boca Raton: CRC Press, 2003.
Znajdź pełny tekst źródłaLobontiu, Nicolae. Compliant Mechanisms. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaHowell, Larry L., Spencer P. Magleby i Brian M. Olsen. Handbook of Compliant Mechanisms. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaHowell, Larry L., Spencer P. Magleby i Brian M. Olsen. Handbook of Compliant Mechanisms. Wiley & Sons, Limited, John, 2013.
Znajdź pełny tekst źródłaHowell, Larry L., Spencer P. Magleby i Brian M. Olsen. Handbook of Compliant Mechanisms. Wiley & Sons, Limited, John, 2013.
Znajdź pełny tekst źródłaHowell, Larry L., Spencer P. Magleby i Brian M. Olsen. Handbook of Compliant Mechanisms. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaHowell, Larry L., Spencer P. Magleby i Brian M. Olsen. Handbook of Compliant Mechanisms. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaHowell, Larry L., Spencer P. Magleby i Brian M. Olsen. Handbook of Compliant Mechanisms. Wiley & Sons, Incorporated, John, 2013.
Znajdź pełny tekst źródłaLobontiu, Nicolae. Compliant Mechanisms: Design of Flexure Hinges. Taylor & Francis Group, 2002.
Znajdź pełny tekst źródłaLobontiu, Nicolae. Compliant Mechanisms: Design of Flexure Hinges. Taylor & Francis Group, 2020.
Znajdź pełny tekst źródłaCzęści książek na temat "Compliant Mechanism Designs"
Linß, S. "6. Synthesis of compliant mechanisms and design of flexure hinges". W Compliant systems, 133–56. Berlin, Boston: De Gruyter, 2019. http://dx.doi.org/10.1515/9783110479744-143.
Pełny tekst źródłaMagleby, Spencer P. "Using the Handbook to Design Devices". W Handbook of Compliant Mechanisms, 15–25. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118516485.ch2.
Pełny tekst źródłaQiu, Chen, i Jian S. Dai. "Conceptual Design of Compliant Parallel Mechanisms". W Springer Tracts in Advanced Robotics, 65–79. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-48313-5_5.
Pełny tekst źródłaKern, D., J. Bauer i W. Seemann. "Control of Compliant Mechanisms with Large Deflections". W Advances in Mechanisms Design, 193–99. Dordrecht: Springer Netherlands, 2012. http://dx.doi.org/10.1007/978-94-007-5125-5_26.
Pełny tekst źródłaZhang, Xianmin, i Benliang Zhu. "Introduction to Compliant Mechanisms and Design Methods". W Topology Optimization of Compliant Mechanisms, 1–24. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0432-3_1.
Pełny tekst źródłaWang, Nianfeng, Jianliang Zhang i Xianmin Zhang. "Design of Passive Compliant Constant-Force Mechanism". W Lecture Notes in Mechanical Engineering, 471–81. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4477-4_33.
Pełny tekst źródłaYoo, Jeong Hoon, i Seung Jae Min. "Design of Micro-Actuators Using Compliant Mechanism". W Fracture and Strength of Solids VI, 1169–74. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-989-x.1169.
Pełny tekst źródłaQuennouelle, C., i C. M. Gosselin. "Stiffness Matrix of Compliant Parallel Mechanisms". W Advances in Robot Kinematics: Analysis and Design, 331–41. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8600-7_35.
Pełny tekst źródłaYu, Y., i Q. Xu. "Dynamic Modeling of Flexural Beams with Combined Loads in Compliant Mechanisms". W Mechanism Design for Robotics, 93–100. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00365-4_12.
Pełny tekst źródłaKittinanthapanya, Rasheed, Yusuke Sugahara, Daisuke Matsuura i Yukio Takeda. "A Novel SMA Driven Compliant Rotary Actuator Based on Double Helical Structure". W Mechanism Design for Robotics, 166–73. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-00365-4_20.
Pełny tekst źródłaStreszczenia konferencji na temat "Compliant Mechanism Designs"
Wang, Michael Yu. "A Kinetoelastic Approach to Continuum Compliant Mechanism Optimization". W ASME 2008 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/detc2008-49426.
Pełny tekst źródłaOlsen, Brian M., Yanal Issac, Larry L. Howell i Spencer P. Magleby. "Utilizing a Classification Scheme to Facilitate Rigid-Body Replacement for Compliant Mechanism Design". W ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28473.
Pełny tekst źródłaMurphy, Morgan D., Ashok Midha i Larry L. Howell. "On the Mobility of Compliant Mechanisms". W ASME 1994 Design Technical Conferences collocated with the ASME 1994 International Computers in Engineering Conference and Exhibition and the ASME 1994 8th Annual Database Symposium. American Society of Mechanical Engineers, 1994. http://dx.doi.org/10.1115/detc1994-0291.
Pełny tekst źródłaCalogero, Joseph, Mary Frecker, Zohaib Hasnain i James E. Hubbard. "Optimization of a Forward-Swept Compliant Mechanism". W ASME 2017 Conference on Smart Materials, Adaptive Structures and Intelligent Systems. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/smasis2017-3843.
Pełny tekst źródłaJones, Talmage H., Jimmy Ng, Ya-Hong Xie i Jonathan B. Hopkins. "Design of a Graphene Nanoribbon Electrostatic Discharge Compliant Mechanism". W ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-86069.
Pełny tekst źródłaKhurana, Jivtesh, Bradley Hanks i Mary Frecker. "Design for Additive Manufacturing of Cellular Compliant Mechanism Using Thermal History Feedback". W ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85819.
Pełny tekst źródłaOlsen, Brian M., Larry L. Howell i Spencer P. Magleby. "Compliant Mechanism Road Bicycle Brake: A Rigid-Body Replacement Case Study". W ASME 2011 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2011. http://dx.doi.org/10.1115/detc2011-48621.
Pełny tekst źródłaJoo, Jinyong, Sridhar Kota i Noboru Kikuchi. "Large Deformation Behavior of Compliant Mechanisms". W ASME 2001 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/detc2001/dac-21084.
Pełny tekst źródłaChen, Guimin, Yanjie Gou i Aimei Zhang. "Achieving Multistability Through Use of a Single Bistable Compliant Mechanism". W ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28388.
Pełny tekst źródłaParkinson, Matthew B., Brian D. Jensen i Gregory M. Roach. "Optimization-Based Design of a Fully-Compliant Bistable Micromechanism". W ASME 2000 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/detc2000/mech-14119.
Pełny tekst źródłaRaporty organizacyjne na temat "Compliant Mechanism Designs"
Lehtimaki, Susanna, Kassim Nishtar, Aisling Reidy, Sara Darehshori, Andrew Painter i Nina Schwalbe. Independent Review and Investigation Mechanisms to Prevent Future Pandemics: A Proposed Way Forward. United Nations University International Institute for Global Health, maj 2021. http://dx.doi.org/10.37941/pb-f/2021/2.
Pełny tekst źródłaMittelsteadt, Matthew. AI Verification: Mechanisms to Ensure AI Arms Control Compliance. Center for Security and Emerging Technology, luty 2021. http://dx.doi.org/10.51593/20190020.
Pełny tekst źródłaLehtimaki, Susanna, Aisling Reidy, Kassim Nishtar, Sara Darehschori, Andrew Painter i Nina Schwalbe. Independent Review and Investigation Mechanisms to Prevent Future Pandemics: A Proposed Way Forward. United Nations University International Institute for Global Health, kwiecień 2021. http://dx.doi.org/10.37941/rr/2021/1.
Pełny tekst źródłaHanbali, Layth, Elliot Hannon, Susanna Lehtimaki, Christine McNab i Nina Schwalbe. Independent Monitoring Mechanism for the Pandemic Accord: Accountability for a safer world. United Nations University International Institute of Global Health, listopad 2022. http://dx.doi.org/10.37941/rr/2022/1.
Pełny tekst źródłaArdanaz, Martín, Eduardo A. Cavallo i Alejandro Izquierdo. Research Insights: How Can Policymakers Make Fiscal Rules More Effective? Inter-American Development Bank, marzec 2023. http://dx.doi.org/10.18235/0004807.
Pełny tekst źródłaArdanaz, Martín, Eduardo A. Cavallo i Alejandro Izquierdo. Fiscal Rules: Challenges and Reform Opportunities for Emerging Markets. Inter-American Development Bank, luty 2023. http://dx.doi.org/10.18235/0004671.
Pełny tekst źródłaLavadenz, Magaly, i Gisela O’Brien. District Administrators' Perspectives on the Impact of The Local Control Funding Formula on English Learners. Loyola Marymount University, 2017. http://dx.doi.org/10.15365/ceel.policy.6.
Pełny tekst źródłaAccountability Mechanism Communication Strategy. Asian Development Bank, maj 2023. http://dx.doi.org/10.22617/tim230149-2.
Pełny tekst źródła