Rozprawy doktorskie na temat „Complex Social Networks”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Complex Social Networks”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Marchese, Emiliano. "Optimizing complex networks models". Thesis, IMT Alti Studi Lucca, 2022. http://e-theses.imtlucca.it/356/1/Marchese_phdthesis.pdf.
Pełny tekst źródłaUnicomb, Samuel Lee. "Threshold driven contagion on complex networks". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEN003.
Pełny tekst źródłaNetworks arise frequently in the study of complex systems, since interactions among the components of such systems are critical. Net- works can act as a substrate for dynamical process, such as the diffusion of information or disease throughout populations. Network structure can determine the temporal evolution of a dynamical process, including the characteristics of the steady state. The simplest representation of a complex system is an undirected, unweighted, single layer graph. In contrast, real systems exhibit heterogeneity of interaction strength and type. Such systems are frequently represented as weighted multiplex networks, and in this work we in- corporate these heterogeneities into a master equation formalism in order to study their effects on spreading processes. We also carry out simulations on synthetic and empirical networks, and show that spread- ing dynamics, in particular the speed at which contagion spreads via threshold mechanisms, depend non-trivially on these heterogeneities. Further, we show that an important family of networks undergo reentrant phase transitions in the size and frequency of global cascades as a result of these interactions. A challenging feature of real systems is their tendency to evolve over time, since the changing structure of the underlying network is critical to the behaviour of overlying dynamical processes. We show that one aspect of temporality, the observed “burstiness” in interaction patterns, leads to non-monotic changes in the spreading time of threshold driven contagion processes. The above results shed light on the effects of various network heterogeneities, with respect to dynamical processes that evolve on these networks
Roth, Camille. "Co-evolution in epistemic networks : reconstructing social complex systems". Palaiseau, Ecole polytechnique, 2005. http://www.theses.fr/2005EPXX0057.
Pełny tekst źródłaAgents producing and exchanging knowledge are forming as a whole a socio-semantic complex system. Studying such knowledge communities offers theoretical challenges, with the perspective of naturalizing further social sciences, as well as practical challenges, with potential applications enabling agents to know the dynamics of the system they are participating in. The present thesis lies within the framework of this research program. Alongside and more broadly, we address the question of reconstruction in social science. Reconstruction is a reverse problem consisting of two issues: (i) deduce a given high-level observation for a considered system from low-level phenomena; and (ii) reconstruct the evolution of high-level observations from the dynamics of lower-level objects. In this respect, we argue that several significant aspects of the structure of a knowledge community are primarily produced by the co-evolution between agents and concepts, i. E. The evolution of an epistemic network. In particular, we address the first reconstruction issue by using Galois lattices to rebuild taxonomies of knowledge communities from low-level observation of relationships between agents and concepts; achieving ultimately an historical description (inter alia field progress, decline, specialization, interaction - merging or splitting). We then micro-found various stylized facts regarding this particular structure, by exhibiting processes at the level of agents accounting for the emergence of epistemic community structure. After assessing the empirical interaction and growth processes, and assuming that agents and concepts are co-evolving, we successfully propose a morphogenesis model rebuilding relevant high-level stylized facts. We finally defend a general epistemological point related to the methodology of complex system reconstruction, eventually supporting our choice of a co-evolutionary framework
Savoy, Daniel Prata. "A dinâmica de opinião dos debates públicos em redes sociais complexas". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-04022013-114700/.
Pełny tekst źródłaThis work studies the effects caused by variations in network topology in the behavior of four different models of opinion dynamics: the Voter Model, Bounded Confidence Model, the Majority Rule Model and the CODA Model. First, these models are used in simulations over a number of different complex social networks, generated to show sereval combinations of key properties such as clustering, connectivity, assortativity and path distances. Then, we perform experiments that show how the topology influences the results in modeling scenarios of public debates, where two rival opinions, A and B, compete under unequal conditions for the consensus of a simulated population.
Ciotti, Valerio. "Positive and negative connections and homophily in complex networks". Thesis, Queen Mary, University of London, 2018. http://qmro.qmul.ac.uk/xmlui/handle/123456789/31787.
Pełny tekst źródłaAbreu, Luís Fernando Dorelli de. "Estrutura e dinâmica de redes de informação". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-08112016-091004/.
Pełny tekst źródłaThe raise in the availability of data regarding interactions between people online has opened new doors to study the process of information diffusion in social networks. In this present work, we make use of the data from the micro-blogging website Twitteralong with complex networks concepts to understand, characterize and classify information diffusion processes observed in this platform and in social networks in general. We present important measures to characterize information cascades and efficient algorithms to calculate them. With the help of these measures, we show that it is possible to quantify the influence of the social network in the process of information diffusion. After that, we show that information does tend to travel along shortest paths on Twitter. Finally, we show that the topology of the social network, without any extra semantic information, can be used to aggregate topics, and that such topology is highly influenced by the topics being discussed on it. Altough we work with only a single dataset, our methods and measures developed are general and can be applied to any process of information diffusion and any complex network.
Libardi, Paula Luciene Oliveira 1980. "Detecção computacional de falecidos em redes sociais online". [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/267725.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Tecnologia
Made available in DSpace on 2018-08-27T04:53:50Z (GMT). No. of bitstreams: 1 Libardi_PaulaLucieneOliveira_M.pdf: 1610224 bytes, checksum: a08b75cd1a30c421927617ee8b6ac8d4 (MD5) Previous issue date: 2015
Resumo: A identificação de usuários falecidos em Redes Sociais Online é um desafio em aberto e, dado o tamanho das principais redes, abordagens que envolvam intervenção manual são impraticáveis. Usuários inativos por longo tempo inviabilizam soluções simples tais como a expiração de um prazo desde o último acesso, o que torna difícil a diferenciação entre inativos e falecidos. Esta pesquisa iniciou-se com o pressuposto de que o problema poderia ser parcialmente resolvido com métodos automáticos e a hipótese era de que dois métodos aqui propostos, um baseado na análise de frequência de mensagens trocadas entre usuários e outro fundamentado na combinação de informações da topologia da rede junto a inspeções de mensagens, poderiam identificar satisfatoriamente parte dos usuários falecidos. Para testar esta hipótese, recorreu-se à simulação computacional, usando topologias livre de escala e aleatória. O programa que simula as redes foi construído de forma a aplicar e testar os métodos de identificação de falecidos, seguindo padrões de projeto que permitem facilmente a troca ou o encadeamento dos algoritmos a validar. Dessa característica, originou-se um terceiro método, que é a combinação das saídas de algoritmos detectores aplicados anteriormente à rede. Os resultados da pesquisa validaram a hipótese, sendo que os dois métodos propostos inicialmente tiveram, cada qual, índices de acerto superiores a 70% na maioria dos casos simulados, independentemente da topologia da rede. Em ambos os métodos, no entanto, é necessária uma calibração de dois parâmetros operacionais, o que exige algum conhecimento da rede examinada e influencia na taxa de detecção. O último método mostrou-se bastante eficiente, com detecção correta superior a 94%, e capaz de absorver flutuações na taxa de detecção dos demais métodos advindas de suas respectivas parametrizações. Portanto, os objetivos da pesquisa foram plenamente atingidos, com a validação da hipótese inicial, a proposta de três métodos para a solução do problema e a geração de um produto tecnológico, o Demortuos, que é o software de simulação da rede e teste dos métodos, atualmente em processo de registro no Instituto Nacional da Propriedade Industrial (INPI). Adicionalmente, foram abertas possibilidades para o desenvolvimento de métodos automáticos para busca de outras classes de usuários
Abstract: Identifying deceased users in Online Social Networks is an open challenge and, given the size of the main networks, approaches involving manual intervention are impractical. Inactive users for a long time prevent simple solutions such as the expiration of a period since the last entry, making it difficult to differentiate between inactive and deceased users. This research began with the assumption that the problem could be partially solved with automated methods and the hypothesis was that two methods proposed here, one based on frequency analysis of messages exchanged between users and the other based on the combination of topology information network with the messages of inspections, could satisfactorily identify the part of deceased users. To test this hypothesis, we used the computer simulation, using free topologies of scale and random, the latter for comparison purposes. The program that simulates the network was constructed to implement and test the deceased identification methods, following design patterns that easily allow the exchange or the chain of algorithms to validate. This characteristic gave up a third method, which is combining the outputs of detectors algorithms previously applied to the network. The survey results validated the hypothesis, and the two proposed methods initially had, each, hit rates of over 70% in most cases simulated, regardless of the network topology. In both methods, however, two operating parameters calibration is necessary, which requires some knowledge of the network and examined influences the detection rate. The last method proved to be very efficient with proper detection above 94%, and able to absorb fluctuations in the detection rate of other methods resulting from their respective parameterization. Therefore, the research objectives were fully achieved, with the validation of the initial hypothesis, the proposed three methods for the solution of the problem and the generation of a technological product, Demortuos, which is the network simulation software and testing methods currently in the registration process at the National Institute of Industrial Property (INPI). Moreover, possibilities are opened for the development of automated methods to search for other classes of users
Mestrado
Tecnologia e Inovação
Mestra em Tecnologia
Grabowicz, Przemyslaw Adam. "Complex networks approach to modeling online social systems. The emergence of computational social science". Doctoral thesis, Universitat de les Illes Balears, 2014. http://hdl.handle.net/10803/131220.
Pełny tekst źródłaLa presente tesis está dedicada a la descripción, análisis y modelado cuantitativo de sistemas complejos sociales en forma de redes sociales en internet. Mediante el uso de métodos y conceptos provenientes de ciencia de redes, análisis de redes sociales y minería de datos se descubren diferentes patrones estadísticos de los sistemas estudiados. Uno de los objetivos a largo plazo de esta línea de investigación consiste en hacer posible la predicción del comportamiento de sistemas complejos tecnológico-sociales, de un modo similar a la predicción meteorológica, usando inferencia estadística y modelado computacional basado en avances en el conocimiento de los sistemas tecnológico-sociales. A pesar de que el objeto del presente estudio son seres humanos, en lugar de los átomos o moléculas estudiados tradicionalmente en la física estadística, la disponibilidad de grandes bases de datos sobre comportamiento humano hace posible el uso de técnicas y métodos de física estadística. En el presente trabajo se utilizan grandes bases de datos provenientes de redes sociales en internet, se miden patrones estadísticos de comportamiento social, y se desarrollan métodos cuantitativos, modelos y métricas para el estudio de sistemas complejos tecnológico-sociales.
Grando, Felipe. "On the analysis of centrality measures for complex and social networks". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2015. http://hdl.handle.net/10183/122516.
Pełny tekst źródłaOver the last years, centrality measures have gained importance within complex and social networks research, e.g., as predictors of behavior, identification of powerful and influential elements, detection of critical spots in communication networks and in transmission of diseases. New measures have been created and old ones reinvented, but few have been proposed to understand the relation among measures as well as between measures and other structural properties of the networks. Our research analyzes and studies these relations with the objective of providing a guide to the application of existing centrality measures for new environments and new purposes. We shall also present evidence that the measures known as Walk Betweenness, Information, Eigenvector and Betweenness are substantially better than other metrics in distinguishing vertices in a network by their structural properties. Furthermore, we provide evidence that each metric performs better with respect to distinct kinds of networks. In addition, we show that most metrics present a high level of redundancy (over 0.8 correlation) and its simultaneous use, in most cases, is fruitless. The results achieved in our research reinforce the idea that to use centrality measures properly, knowledge about their underlying properties and behavior is valuable, as we show in this dissertation.
Amiri, Babak. "Evolutionary Algorithms for Community Detection in Complex Networks". Thesis, The University of Sydney, 2013. http://hdl.handle.net/2123/10451.
Pełny tekst źródłaGrönlund, Andreas. "Complex patterns : from physical to social interactions". Doctoral thesis, Umeå universitet, Institutionen för fysik, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-801.
Pełny tekst źródłaNastos, James. "Utilizing graph classes for community detection in social and complex networks". Thesis, University of British Columbia, 2015. http://hdl.handle.net/2429/53014.
Pełny tekst źródłaGraduate Studies, College of (Okanagan)
Graduate
Hill, Robert M. Martin Barbara N. "Leadership capacity in a complex connected age". Diss., Columbia, Mo. : University of Missouri--Columbia, 2009. http://hdl.handle.net/10355/7033.
Pełny tekst źródłaHannesson, Kristófer. "Identifying Important Members in a Complex Online Social Network". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-216947.
Pełny tekst źródłaFramgången hos Online Sociala Nätverk (OSN) påverkas av förmågan att förstå vem som är viktig. Ett OSN kan ses som en graf där användarna är noder och deras interaktioner ärbågar. Grafbaserade metoder kan möjliggöra identifiering av personer i dessa nätverk somtill exempel uppvisar egenskaper hos ledare, påverkare eller informationsförmedlare. Ett Massively Multiplayer Online game (MMO) representerar en typ av OSN. Det är ett datorrollspel där ett stort antal spelare interagerar med varandra i en virtuell värld. Genomatt använda beteendedata om spelarnas interaktioner i den rymdbaserade MMO:n EVE Online är målet med denna avhandling att genomföra en experimentell studie för att utvärdera effektiviteten hos ett antal grafbaserade metoder för att hitta viktiga spelare inom olika beteendemässiga sammanhang. För det ändamålet extraherar vi beteendedata för att konstruera fyra distinkta grafer: Fleet, Aggression, Mail och Market. Vi skapar också ett ground truth" dataset av viktiga spelare baserat på heuristik från viktiga spelkategorier. Vi utför experiment på dessa grafer med ett urval av grafcentralitet, Influence Maximization och heuristiska metoder. Vi undersöker hur metoderna presterar i termer av antal ground truth spelare som finns per graf och över grafer, och i termer av exekveringstid. Våra resultat tyder på att det inte finns någon optimal metod för alla grafer. Metoden och grafen bör väljas beroende på intentionen vid varje tillfälle. För detta ändamål tillhandahåller vi rekommendationer samt potentiella affärsmässiga användningsområden. Vi tror att denna studie tjänar som utgångspunkt för mer grafbaserad analys inom EVEOnlines virtuella universum där det finns många outforskade forskningsmöjligheter.
Bell, Patrick M. "Development of Local Homeland Security Networks in the State of Florida: A Social Network Analysis Approach". FIU Digital Commons, 2012. http://digitalcommons.fiu.edu/etd/574.
Pełny tekst źródłaGabardo, Ademir cristiano. "A heuristic to detect community structures in dynamic complex networks". Universidade Tecnológica Federal do Paraná, 2014. http://repositorio.utfpr.edu.br/jspui/handle/1/970.
Pełny tekst źródłaErlandsson, Fredrik. "Human Interactions on Online Social Media : Collecting and Analyzing Social Interaction Networks". Doctoral thesis, Blekinge Tekniska Högskola, Institutionen för datalogi och datorsystemteknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-15503.
Pełny tekst źródłaMorini, Matteo. "Tools for Understanding the Dynamics of Social Networks". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEN075/document.
Pełny tekst źródłaThis thesis provides the reader with a compendium of applications of network theory; tailor-madetools suited for the purpose have been devised and implemented in a data-driven fashion. In the first part, a novel centrality metric, aptly named “bridgeness”, is presented, based on adecomposition of the standard betweenness centrality. One component, local connectivity, roughlycorresponding to the degree of a node, is set apart from the other, which evaluates longer-rangestructural properties. Indeed, the latter provides a measure of the relevance of each node in“bridging” weakly connected parts of a network; a prominent feature of the metric is its agnosticism with regard to the eventual ground truth community structure.A second application is aimed at describing dynamic features of temporal graphs which are apparent at the mesoscopic level. The dataset of choice includes 40 years of selected scientific publications.The appearance and evolution in time of a specific field of study (“wavelets”) is captured,discriminating persistent features from transient artifacts, which result from the intrinsically noisy community detection process, independently performed on successive static snapshots. The concept of “laminar stream”, on which the “complexity score” we seek to optimize is based, is introduced.In a similar vein, a network of Japanese investors has been constructed, based on a dataset which includes (indirect) information on co-owned overseas subsidiaries. A hotly debated issue in the field of industrial economics, the Miwa-Ramseyer hypothesis, has been conclusively shown to be false, at least in its strong form
DILIBERTO, Simona. "Households and their Expenditures as an Evolving Complex Social System". Doctoral thesis, Università degli Studi di Palermo, 2020. http://hdl.handle.net/10447/395284.
Pełny tekst źródłaFriggeri, Adrien. "A Quantitative Theory of Social Cohesion". Phd thesis, Ecole normale supérieure de lyon - ENS LYON, 2012. http://tel.archives-ouvertes.fr/tel-00737199.
Pełny tekst źródłaMartins, Rafael Franco. "Uma proposta de modelagem por agentes para o problema da herança e desigualdade econômica". Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/100/100132/tde-12042017-111602/.
Pełny tekst źródłaIn recent years a concern for a possible rise in social inequality has increased considerably, especially on account of Piketty\'s work entitled \"Capital in the 21st Century.\" For a small reduction in the birth rate among the rich, it will be one of the crucial points for this increase. As predictions contained in the book are overwhelming, there is nothing for an inequality will increase a threatening point to democracy and existing political and social systems. However, some economists, such as Matthew Rognlie, do not agree with this article and point out supposed errors and failures committed by the French economist. The purpose of this paper is to try a different path from Piketty, using other means and techniques, this work is useful for an analysis of the issue of inequality caused by the inheritance of goods. A model of family network for the distribution of wealth in societies \"to a model of family network for the distribution of wealth in societies. The result obtained is in line with the results obtained by Piketty
Araújo, Eduardo Barbosa. "Scientific Collaboration Networks from Lattes Database: Topology, Dynamics and Gender Statistics". reponame:Repositório Institucional da UFC, 2016. http://www.repositorio.ufc.br/handle/riufc/18489.
Pełny tekst źródłaSubmitted by Edvander Pires (edvanderpires@gmail.com) on 2016-07-19T15:58:54Z No. of bitstreams: 1 2016_tese_ebaraujo.pdf: 3600069 bytes, checksum: a78e83ffda97c499e589b405da4da3c8 (MD5)
Approved for entry into archive by Edvander Pires (edvanderpires@gmail.com) on 2016-07-19T15:59:07Z (GMT) No. of bitstreams: 1 2016_tese_ebaraujo.pdf: 3600069 bytes, checksum: a78e83ffda97c499e589b405da4da3c8 (MD5)
Made available in DSpace on 2016-07-19T15:59:07Z (GMT). No. of bitstreams: 1 2016_tese_ebaraujo.pdf: 3600069 bytes, checksum: a78e83ffda97c499e589b405da4da3c8 (MD5) Previous issue date: 2016
Understanding the dynamics of research production and collaboration may reveal better strategies for scientific careers, academic institutions and funding agencies. Here we propose the use of a large and multidisciplinary database of scientific curricula in Brazil, namely, the Lattes Platform, to study patterns of scientific production and collaboration. Detailed information about publications and researchers is available in this database. Individual curricula are submitted by the researchers themselves so that co-authorship is unambiguous. Researchers can be evaluated by scientific productivity, geographical location and field of expertise. Our results show that the collaboration network is growing exponentially for the last three decades, with a distribution of number of collaborators per researcher that approaches a power-law as the network gets older. Moreover, both the distributions of number of collaborators and production per researcher obey power-law behaviors, regardless of the geographical location or field, suggesting that the same universal mechanism might be responsible for network growth and productivity. We also show that the collaboration network under investigation displays a typical assortative mixing behavior, where teeming researchers (i.e., with high degree) tend to collaborate with others alike. Moreover, we discover that on average men prefer collaborating with other men than with women, while women are more egalitarian. This is consistently observed over all fields and essentially independent on the number of collaborators of the researcher. The solely exception is for engineering, where clearly this gender bias is less pronounced, when the number of collaborators increases. We also find that the distribution of number of collaborators follows a power-law, with a cut-off that is gender dependent. This reflects the fact that on average men produce more papers andhave more collaborators than women. We also find that both genders display the same tendency towards interdisciplinary collaborations, except for Exact and Earth Sciences, where women having many collaborators are more open to interdisciplinary research.
Compreender a dinâmica de produção e colaboração em pesquisa pode revelar melhores estratégias para carreiras científicas, instituições acadêmicas e agências de fomento. Neste trabalho nós propomos o uso de uma grande e multidisciplinar base de currículos científicos brasileira, a Plataforma Lattes, para o estudo de padrões em pesquisa científica e colaborações. Esta base de dados inclui informações detalhadas acerca de publicações e pesquisadores. Currículos individuais são enviados pelos próprios pesquisadores de forma que a identificação de coautoria não é ambígua. Pesquisadores podem ser classificados por produção científica, localização geográfica e áreas de pesquisa. Nossos resultados mostram que a rede de colaborações científicas tem crescido exponencialmente nas últimas três décadas, com a distribuição do número de colaboradores por pesquisador se aproximando de uma lei de potência à medida que a rede evolui. Além disso, ambas a distribuição do número de colaboradores e a produção por pesquisador seguem o comportamento de leis de potência, independentemente da região ou áreas, sugerindo que um mesmo mecanismo universal pode ser responsável pelo crescimento da rede e pela produtividade dos pesquisadores. Também mostramos que as redes de colaboração investigadas apresentam um típico comportamento assortativo, no qual pesquisadores de alto nível (com muitos colaboradores) tendem a colaborador com outros semelhantes. Em seguida, mostramos que homens preferem colaborar com outros homens enquanto mulheres são mais igualitárias ao estabelecer suas colaborações. Isso é consistentemente observado em todas as áreas e é essencialmente independente do número de colaborações do pesquisador. A única exceção sendo a área de Engenharia, na qual este viés é claramente menos pronunciado para pesquisadores com muitas colaborações. Também mostramos que o número de colaborações segue o comportamento de leis de potência, com um cutoff dependente do gênero. Isso se reflete no fato de que em média mulheres produzem menos artigos e têm menos colaborações que homens. Também mostramos que ambos os gêneros exibem a mesma tendência quanto a colaborações interdisciplinares, exceto em Ciências Exatas e da Terra, nas quais mulheres tendo mais colaboradores são mais propensas a pesquisas interdisciplinares.
Kasper, Eric Calvin. "Nurturing emergent agency : networks and dynamics of complex social change processes in Raipur, India". Thesis, University of Sussex, 2017. http://sro.sussex.ac.uk/id/eprint/66943/.
Pełny tekst źródłaGodoy, Lorite Antonia. "Time Evolution and Predictability of Social Behavior in Techno-Social Networks". Doctoral thesis, Universitat Rovira i Virgili, 2016. http://hdl.handle.net/10803/348873.
Pełny tekst źródłaEl hecho que cada vez dispongamos de más datos sociales de sistemas socio-tecnológicos---sistemas que registran nuestra actividad diaria, tales como registros de tarjeta de crédito, registros de llamadas telefónicas, correo electrónico, etc.---y las redes sociales on-line---como facebook, twitter, instagram, etc.---, ha hecho posible estudiar el comportamiento humano desde diferentes perspectivas. Descubrir los patrones detrás de estos datos no sólo aportará un mejor conocimiento de la sociedad, sino que también beneficiaría a la sociedad en diferentes aspectos, como la adaptación de la tecnología a las necesidades sociales o el diseño de mejores políticas para evitar la propagación de epidemias. El objetivo de esta tesis es precisamente descubrir patrones estructurales y temporales en los sistemas sociales y desarrollar modelos predictivos en base a ellos. En particular, analizamos la evolución a largo plazo en una red de correo electrónico con más de 1.000 personas a lo largo de cuatro años consecutivos. Vemos que, aunque la evolución de la comunicación entre usuarios es altamente impredecible, la evolución macro de las redes de comunicación social sigue leyes estadísticas bien definidas, caracterizadas por el decaimiento exponencial de las variaciones logarítmicas del peso de las comunicaciones entre usuarios y del peso de los individuos en la red. Así mismo, encontramos que los individuos presentan una forma caracteristica de comunicarse, y esta no cambia en años. En cuanto a la predictibilidad, desarrollamos dos modelos basados en redes: un modelo de recomendación (que predice votaciones de usuarios sobre objetos) y un modelo de inferencia temporal (que predice sucesos en el tiempo). Nuestro modelo de recomendación es escalable y considerablemente más preciso en sus predicciones que los algoritmos actuales para bases de datos de millones de votaciones. El enfoque se basa en la suposición de que hay grupos de personas y de artículos (por ejemplo, películas, libros, etc.) y que las preferencias de un individuo sobre un artículo dado dependen de los grupos a los que pertenezcan. Pero además, permitimos que cada individuo y cada artículo pertenecan simultáneamente a diferentes grupos. Las comunidades superpuestas resultantes y las predicciones sobre las votaciones pueden inferirse con un algoritmo de maximiz
The increasing availability of social data sources from socio-technological systems ---systems that record our daily activity such as credit card records, call-phone records, email, etc.--- and on-line social networks ---such as facebook, twitter, instagram, etc.---, has made it possible to study human behavior from different perspectives. Uncovering the patterns behind this data would not only give us a better knowledge about our society but could also benefit our society in a number of ways such as adapting technology to social needs or design better policies to avoid spread of epidemics. The aim of this thesis is precisely to uncover both structural and temporal patterns in social systems and to develop predictive models based on them. In particular, we analyze the long-term evolution in an email network with over 1,000 individuals throughout four consecutive years. We find that, although the evolution of individual ties is highly unpredictable, the macro-evolution of social communication networks follows well-defined statistical laws, characterized by exponentially decaying log-variations of the weight of social ties and of individuals' social strength. At the same time, we find that individuals have social signatures that are remarkably stable over the scale of several years. Regarding predictability, we develop two network-based models: a recommender model, and a temporal inference model. Our recommender model makes scalable predictions and is considerably more accurate than current algorithms for large datasets. The approach is based on the assumption that there are groups of individuals and of items (e.g. movies, books, etc.), and that the preferences of an individual for an given item depend on their group memberships. Importantly, we allow each individual and each item to belong simultaneously to different groups. The resulting overlapping communities and the predicted preferences can be inferred with a scalable expectation-maximization algorithm based on a variational approximation. In the temporal inference model users can belong simultaneously to different groups, but also the time intervals belong to overlapping communities. The results suggest that the algorithm is able to distinguish real events of non-events almost perfectly.
Monti, C. C. "MODELING AND MINING COMPLEX NETWORKS WITH FEATURE-RICH NODES". Doctoral thesis, Università degli Studi di Milano, 2017. http://hdl.handle.net/2434/485805.
Pełny tekst źródłaOrman, Keziban. "Contribution to the interpretation of evolving communities in complex networks : Application to the study of social interactions". Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0072/document.
Pełny tekst źródłaComplex Networks constitute a convenient tool to model real-world complex systems. For this reason, they have become very popular in the last decade. Many tools exist to study complex networks. Among them, community detection is one of the most important. A community is roughly defined as a group of nodes more connected internally than to the rest of the network. In the literature, this intuitive definition has been formalized in many ways, leading to countless different methods and variants to detect communities. In the large majority of cases, the result of these methods is set of node groups in which each node group corresponds to a community. From the applicative point of view, the meaning of these groups is as important as their detection. However, although the task of detecting communities in itself took a lot of attraction, the problem of interpreting them has not been properly tackled until now. In this thesis, we see the interpretation of communities as a problem independent from the community detection process, consisting in identifying the most characteristic features of communities. We break it down into two sub-problems: 1) finding an appropriate way to represent a community and 2) objectively selecting the most characteristic parts of this representation. To solve them, we take advantage of the information encoded in dynamic attributed networks. We propose a new representation of communities under the form of temporal sequences of topological measures and attribute values associated to individual nodes. We then look for emergent sequential patterns in this dataset, in order to identify the most characteristic community features. We perform a validation of our framework on artificially generated dynamic attributed networks. At this occasion, we study its behavior relatively to changes in the temporal evolution of the communities, and to the distribution and evolution of nodal features. We also apply our framework to real-world systems: a DBLP network of scientific collaborations, and a LastFM network of social and musical interactions. Our results show that the detected communities are not completely homogeneous, in the sense several node topic or interests can be identified for a given community. Some communities are composed of smaller groups of nodes which tend to evolve together as time goes by, be it in terms of individual (attributes, topological measures) or relational (community migration) features. The detected anomalies generally fit some generic profiles: nodes misplaced by the community detection tool, nodes relatively similar to their communities, but also significantly different on certain features and/or not synchronized with their community evolution, and finally nodes with completely different interests
Kolgushev, Oleg. "Influence of Underlying Random Walk Types in Population Models on Resulting Social Network Types and Epidemiological Dynamics". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc955128/.
Pełny tekst źródłaLivelsberger, Tara L. ""Lost" in conversations complex social behavior in Online environments /". Ohio : Ohio University, 2009. http://www.ohiolink.edu/etd/view.cgi?ohiou1244226331.
Pełny tekst źródłaMina, Christakis. "Open Technological Standardization Processes Through Learning Networks". 京都大学 (Kyoto University), 2010. http://hdl.handle.net/2433/120839.
Pełny tekst źródłaSrivastava, Sameer Bhatt. "Social Capital Activation during Times of Organizational Change". Thesis, Harvard University, 2012. http://dissertations.umi.com/gsas.harvard:10158.
Pełny tekst źródłaMass, Lena M. "Analysing technology & innovation in complex networks : processes, dynamics, and development of multi-level interorganisational networks". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:a0280ae4-0523-4b23-8f4d-5e4f880fdcb1.
Pełny tekst źródłaSantos, Francisco C. "Topological evolution: from biological to social networks". Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210702.
Pełny tekst źródłaPeter, Camaren. "Bayesian participatory-based decision analysis : an evolutionary, adaptive formalism for integrated analysis of complex challenges to social-ecological system sustainability". Doctoral thesis, University of Cape Town, 2010. http://hdl.handle.net/11427/18284.
Pełny tekst źródłaThis dissertation responds to the need for integration between researchers and decision-makers who are dealing with complex social-ecological system sustainability and decision-making challenges. To this end, we propose a new approach, called Bayesian Participatory-based Decision Analysis (BPDA), which makes use of graphical causal maps and Bayesian networks to facilitate integration at the appropriate scales and levels of descriptions. The BPDA approach is not a predictive approach, but rather, caters for a wide range of future scenarios in anticipation of the need to adapt to unforeseeable changes as they occur. We argue that the graphical causal models and Bayesian networks constitute an evolutionary, adaptive formalism for integrating research and decision-making for sustainable development. The approach was implemented in a number of different interdisciplinary case studies that were concerned with social-ecological system scale challenges and problems, culminating in a study where the approach was implemented with decision-makers in Government. This dissertation introduces the BPDA approach, and shows how the approach helps identify critical cross-scale and cross-sector linkages and sensitivities, and addresses critical requirements for understanding system resilience and adaptive capacity.
Dugué, Nicolas. "Analyse du capitalisme social sur Twitter". Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2081/document.
Pełny tekst źródłaBourdieu, a sociologist, defines social capital as : "The set of current or potential ressources linked to the possession of a lasting relationships network". On Twitter,the friends, followers, users mentionned and retweeted are considered as the relationships network of each user, which ressources are the chance to get relevant information, to beread, to satisfy a narcissist need, to spread information or advertisements. We observethat some Twitter users that we call social capitalists aim to maximize their follower numbers to maximize their social capital. We introduce their methods, based on mutual subscriptions and dedicated hashtags. In order to study them, we first describe a large scaledetection method based on their set of followers and followees. Then, we show with an automated Twitter account that their methods allow to gain followers and to be retweeted efficiently. Afterwards, we bring to light that social capitalists methods allows these users to occupy specific positions in the network allowing them a high visibility.Furthermore, these methods make these users influent according to the major tools. Wethus set up a classification method to detect accurately these user and produce a newinfluence score
AraÃjo, Eduardo Barbosa. "Scientific Collaboration Networks from Lattes Database: Topology, Dynamics and Gender Statistics". Universidade Federal do CearÃ, 2016. http://www.teses.ufc.br/tde_busca/arquivo.php?codArquivo=17184.
Pełny tekst źródłaCompreender a dinÃmica de produÃÃo e colaboraÃÃo em pesquisa pode revelar melhores estratÃgias para carreiras cientÃficas, instituiÃÃes acadÃmicas e agÃncias de fomento. Neste trabalho nÃs propomos o uso de uma grande e multidisciplinar base de currÃculos cientÃficos brasileira, a Plataforma Lattes, para o estudo de padrÃes em pesquisa cientÃfica e colaboraÃÃes. Esta base de dados inclui informaÃÃes detalhadas acerca de publicaÃÃes e pesquisadores. CurrÃculos individuais sÃo enviados pelos prÃprios pesquisadores de forma que a identificaÃÃo de coautoria nÃo à ambÃgua. Pesquisadores podem ser classificados por produÃÃo cientÃfica, localizaÃÃo geogrÃfica e Ãreas de pesquisa. Nossos resultados mostram que a rede de colaboraÃÃes cientÃficas tem crescido exponencialmente nas Ãltimas trÃs dÃcadas, com a distribuiÃÃo do nÃmero de colaboradores por pesquisador se aproximando de uma lei de potÃncia à medida que a rede evolui. AlÃm disso, ambas a distribuiÃÃo do nÃmero de colaboradores e a produÃÃo por pesquisador seguem o comportamento de leis de potÃncia, independentemente da regiÃo ou Ãreas, sugerindo que um mesmo mecanismo universal pode ser responsÃvel pelo crescimento da rede e pela produtividade dos pesquisadores. TambÃm mostramos que as redes de colaboraÃÃo investigadas apresentam um tÃpico comportamento assortativo, no qual pesquisadores de alto nÃvel (com muitos colaboradores) tendem a colaborador com outros semelhantes. Em seguida, mostramos que homens preferem colaborar com outros homens enquanto mulheres sÃo mais igualitÃrias ao estabelecer suas colaboraÃÃes. Isso à consistentemente observado em todas as Ãreas e à essencialmente independente do nÃmero de colaboraÃÃes do pesquisador. A Ãnica exceÃÃo sendo a Ãrea de Engenharia, na qual este viÃs à claramente menos pronunciado para pesquisadores com muitas colaboraÃÃes. TambÃm mostramos que o nÃmero de colaboraÃÃes segue o comportamento de leis de potÃncia, com um cutoff dependente do gÃnero. Isso se reflete no fato de que em mÃdia mulheres produzem menos artigos e tÃm menos colaboraÃÃes que homens. TambÃm mostramos que ambos os gÃneros exibem a mesma tendÃncia quanto a colaboraÃÃes interdisciplinares, exceto em CiÃncias Exatas e da Terra, nas quais mulheres tendo mais colaboradores sÃo mais propensas a pesquisas interdisciplinares.
Understanding the dynamics of research production and collaboration may reveal better strategies for scientific careers, academic institutions and funding agencies. Here we propose the use of a large and multidisciplinary database of scientific curricula in Brazil, namely, the Lattes Platform, to study patterns of scientific production and collaboration. Detailed information about publications and researchers is available in this database. Individual curricula are submitted by the researchers themselves so that co-authorship is unambiguous. Researchers can be evaluated by scientific productivity, geographical location and field of expertise. Our results show that the collaboration network is growing exponentially for the last three decades, with a distribution of number of collaborators per researcher that approaches a power-law as the network gets older. Moreover, both the distributions of number of collaborators and production per researcher obey power-law behaviors, regardless of the geographical location or field, suggesting that the same universal mechanism might be responsible for network growth and productivity. We also show that the collaboration network under investigation displays a typical assortative mixing behavior, where teeming researchers (i.e., with high degree) tend to collaborate with others alike. Moreover, we discover that on average men prefer collaborating with other men than with women, while women are more egalitarian. This is consistently observed over all fields and essentially independent on the number of collaborators of the researcher. The solely exception is for engineering, where clearly this gender bias is less pronounced, when the number of collaborators increases. We also find that the distribution of number of collaborators follows a power-law, with a cut-off that is gender dependent. This reflects the fact that on average men produce more papers andhave more collaborators than women. We also find that both genders display the same tendency towards interdisciplinary collaborations, except for Exact and Earth Sciences, where women having many collaborators are more open to interdisciplinary research.
Dulac, Adrien. "Etude des modèles à composition mixée pour l'analyse de réseaux complexes". Thesis, Université Grenoble Alpes (ComUE), 2018. http://www.theses.fr/2018GREAM080/document.
Pełny tekst źródłaRelational data are ubiquitous in the nature and their accessibility has not ceased to increase in recent years. Those data, see as a whole, form a network, which can be represented by a data structure called a graph, where each vertex of the graph is an entity and each edge a connection between pair of vertices. Complex networks in general, such as the Web, communication networks or social network, are known to exhibit common structural properties that emerge through their graphs. In this work we emphasize two important properties called *homophilly* and *preferential attachment* that arise on most of the real-world networks. We firstly study a class of powerful *random graph models* in a Bayesian nonparametric setting, called *mixed-membership model* and we focus on showing whether the models in this class comply with the mentioned properties, after giving formal definitions in a probabilistic context of the latter. Furthermore, we empirically evaluate our findings on synthetic and real-world network datasets. Secondly, we propose a new model, which extends the former Stochastic Mixed-Membership Model, for weighted networks and we develop an efficient inference algorithm able to scale to large-scale networks
Martinez, MaryAnn. "Human Centeredness: The Foundation for Leadership-as-Practice in Complex Local/Regional Food Networks". Antioch University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=antioch1624179376157514.
Pełny tekst źródłaRADICIONI, Tommaso. "All the ties that bind. A socio-semantic network analysis of Twitter political discussions". Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/109224.
Pełny tekst źródłaRocha, Luis E. C. "Exploring patterns of empirical networks". Doctoral thesis, Umeå universitet, Institutionen för fysik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-46588.
Pełny tekst źródłaVi är ständigt kämpar för att förstå hur naturen fungerar, försöker identifier återkommande evenemang och söker analogier och relationer mellan objekt eller individer. Veta beteendemönster är kraftfull och grundläggande för överlevnad av arter. I denna avhandling, dataset av olika system i samband med transporter är ekonomi, sexuella och sociala kontakter, som kännetecknas av att använda formalismer av tidsserier och nätverk teori. En del av resultatet utgörs av insamling och analys av ursprungliga nätdata, fokuserar resten på simulering av dynamiska processer i dessa nätverk och att studera hur de påverkas av de särskilda strukturer. Huvuddelen av avhandlingen handlar om tidsmässiga nät, i.e. nät vars struktur förändringar i tid. Den nya tidsdimensionen avslöjar strukturella dynamiska egenskaper som hjälper till att förstå den feedback mekanismer som ansvarar för att göra nätverksstruktur att anpassa sig och förstå uppkomsten och hämning av olika företeelser i dynamiska system, epidemier i sexuella och kontaktnät.
Constantemente nos esforçamos para entender como a natureza funciona, tentando identificar eventos recorrentes e procurando por analogias e relações entre objetos ou indivíduos. Conhecer padrões de comportamento é algo poderoso e fundamental para a sobrevivência de qualquer espécie. Nesta tese, dados de sistemas diversos, relacionados a transporte, economia, contatos sexuais e sociais, são caracterizados usando o formalismo de séries temporais e teoria de redes. Uma parte dos resultados consiste na coleta e análise de dados de redes originais, a outra parte concentra-se na simulação de processos dinâmicos nessas redes e no estudo de como esses processos são afetados por determinadas estruturas. A maior parte da tese é sobre redes temporais, ou seja, redes cuja estrutura varia no tempo. A nova dimensão temporal revela propriedades estruturais dinâmicas que contribuem para o entendimento dos mecanismos de resposta responsáveis pela adaptação da rede, e para o entendimento da emergência e inibição de fenômenos diversos em sistemas dinâmicos, como epidemias em redes sexuais e de contato pessoal.
De, Luca Giancarlo. "Decision Making in Complex Environments: an adaptive network approach". Doctoral thesis, SISSA, 2013. http://hdl.handle.net/20.500.11767/4808.
Pełny tekst źródłaCambe, Jordan. "Understanding the complex dynamics of social systems with diverse formal tools". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEN043/document.
Pełny tekst źródłaFor the past two decades, electronic devices have revolutionized the traceability of social phenomena. Social dynamics now leave numerical footprints, which can be analyzed to better understand collective behaviors. The development of large online social networks (like Facebook, Twitter and more generally mobile communications) and connected physical structures (like transportation networks and geolocalised social platforms) resulted in the emergence of large longitudinal datasets. These new datasets bring the opportunity to develop new methods to analyze temporal dynamics in and of these systems. Nowadays, the plurality of data available requires to adapt and combine a plurality of existing methods in order to enlarge the global vision that one has on such complex systems. The purpose of this thesis is to explore the dynamics of social systems using three sets of tools: network science, statistical physics modeling and machine learning. This thesis starts by giving general definitions and some historical context on the methods mentioned above. After that, we show the complex dynamics induced by introducing an infinitesimal quantity of new agents to a Schelling-like model and discuss the limitations of statistical model simulation. The third chapter shows the added value of using longitudinal data. We study the behavior evolution of bike sharing system users and analyze the results of an unsupervised machine learning model aiming to classify users based on their profiles. The fourth chapter explores the differences between global and local methods for temporal community detection using scientometric networks. The last chapter merges complex network analysis and supervised machine learning in order to describe and predict the impact of new businesses on already established ones. We explore the temporal evolution of this impact and show the benefit of combining networks topology measures with machine learning algorithms
JAVARONE, MARCO ALBERTO. "Models and frameworks for studying social behaviors". Doctoral thesis, Università degli Studi di Cagliari, 2013. http://hdl.handle.net/11584/266244.
Pełny tekst źródłaKurka, David Burth 1988. "Online social networks = knowledge extraction from information diffusion and analysis of spatio-temporal phenomena = Redes sociais online: extração de conhecimento e análise espaço-temporal de eventos de difusão de informação". [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259074.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação
Made available in DSpace on 2018-08-27T03:14:35Z (GMT). No. of bitstreams: 1 Kurka_DavidBurth_M.pdf: 1660677 bytes, checksum: 7258daf8129b4dac9d1f647195775d3c (MD5) Previous issue date: 2015
Resumo: Com o surgimento e a popularização de Redes Sociais Online e de Serviços de Redes Sociais, pesquisadores da área de computação têm encontrado um campo fértil para o desenvolvimento de trabalhos com grande volume de dados, modelos envolvendo múltiplos agentes e dinâmicas espaço-temporais. Entretanto, mesmo com significativo elenco de pesquisas já publicadas no assunto, ainda existem aspectos das redes sociais cuja explicação é incipiente. Visando o aprofundamento do conhecimento da área, este trabalho investiga fenômenos de compartilhamento coletivo na rede, que caracterizam eventos de difusão de informação. A partir da observação de dados reais oriundos do serviço online Twitter, tais eventos são modelados, caracterizados e analisados. Com o uso de técnicas de aprendizado de máquina, são encontrados padrões nos processos espaço-temporais da rede, tornando possível a construção de classificadores de mensagens baseados em comportamento e a caracterização de comportamentos individuais, a partir de conexões sociais
Abstract: With the advent and popularization of Online Social Networks and Social Networking Services, computer science researchers have found fertile field for the development of studies using large volumes of data, multiple agents models and spatio-temporal dynamics. However, even with a significant amount of published research on the subject, there are still aspects of social networks whose explanation is incipient. In order to deepen the knowledge of the area, this work investigates phenomena of collective sharing on the network, characterizing information diffusion events. From the observation of real data obtained from the online service Twitter, we collect, model and characterize such events. Finally, using machine learning and computational data analysis, patterns are found on the network's spatio-temporal processes, making it possible to classify a message's topic from users behaviour and the characterization of individual behaviour, from social connections
Mestrado
Engenharia de Computação
Mestre em Engenharia Elétrica
MORENO, Bruno Neiva. "Representação e análise de encontros espaço-temporais publicados em redes sociais online". Universidade Federal de Pernambuco, 2016. https://repositorio.ufpe.br/handle/123456789/18621.
Pełny tekst źródłaMade available in DSpace on 2017-04-24T14:37:15Z (GMT). No. of bitstreams: 2 license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5) tese_bnm_OK.pdf: 5126585 bytes, checksum: 5ccba23295950094b489a2df805e0815 (MD5) Previous issue date: 2016-09-09
O crescente uso de redes sociais online tem feito com que usuários compartilhem, também, informações detalhadas a respeito dos locais que os mesmos frequentam, criando uma ligação entre o mundo físico (o movimento destes usuários no globo) e o mundo virtual (o que eles expressam sobre esses movimentos nas redes). O “check-in” é a funcionalidade responsável pelo compartilhamento da localização. Em uma rede social com essa funcionalidade, qualquer usuário pode publicar o local em que o mesmo está em determinado instante de tempo. Esta tese apresenta novas abordagens de análise de redes sociais online considerando as dimensões social, espacial e temporal que são inerentes à publicação de check-ins de usuários. As informações sociais, espaciais e temporais são definidas sob a perspectiva de encontros de usuários, sendo este o objeto de estudo dessa tese. Encontros ocorrem quando duas pessoas (dimensão social), estão em algum local (dimensão espacial), em determinado instante de tempo (dimensão temporal) e decidem publicar esse encontro através de check-ins. Além de apresentar um algoritmo para detecção de encontros, é definido um modelo para representação desses encontros. Este modelo é chamado de SiST (do inglês, SocIal, Spatial and Temporal) e modela encontros por meio de redes complexas. Para validar o modelo proposto, foram utilizados dados reais de redes sociais online. Com esses dados, os encontros foram detectados e analisados sob diferentes perspectivas com o objetivo de investigar a existência de alguma lei que governe a publicação dos mesmos, bem como para identificar padrões relativos a sua ocorrência, como padrões temporais, por exemplo. Além disso, as redes construídas a partir do modelo SiST também foram analisadas em termos de suas propriedades estruturais e topológicas. Por meio de redes SiST também foram estudados padrões de movimentação de usuários, como situações em que usuários se movimentam em grupo no globo ou situações em que um usuário é seguido por outros.
The growing use of online social networks has caused users to share detailed information about the places they visit, resulting on a clear connection between the physical world (i.e. the movement of these users on the globe) and the virtual world (which they express about these movements in the social network). The functionality responsible for sharing location by users is named as “check in”. In a social network with this feature, any user can publish their visited places. This thesis presents new approaches for online social networks analysis considering the social, spatial and temporal dimensions that are implicit in the publication of users check-ins. Social, spatial and temporal information is defined from the perspective of “user encounters”, which is the study object of this thesis. Users encounters occur when two people (social dimension) are somewhere (spatial dimension) in a given time (temporal dimension) and decide to publish this meeting through check-ins. In addition to the algorithm presented for encounters detection, we also defined a model for representation of these encounters. This model is called as SiST (SocIal, Spatial and Temporal). The SiST model basically represent encounters by a graph structure. To validate the proposed approach, we used real data from online social networks. With these data the users encounters were detected and analyzed from different perspectives aiming at investigating the existence of any law governing the publication of encounters and also to identify patterns related to its occurrence, like temporal patterns, for example. Furthermore, the graphs built from SiST model were also analyzed in terms of its structural and topological properties. Through the SiST networks the users movements were studied as well, like in situations in which users move in group or situations where users are followed by other users.
Gómez, Cerdà Vicenç. "Algorithms and complex phenomena in networks: Neural ensembles, statistical, interference and online communities". Doctoral thesis, Universitat Pompeu Fabra, 2008. http://hdl.handle.net/10803/7548.
Pełny tekst źródłaEn la primera part s'estudia un model de neurones estocàstiques inter-comunicades mitjançant potencials d'acció. Proposem una tècnica de modelització a escala mesoscòpica i estudiem una transició de fase en un acoblament crític entre les neurones. Derivem una regla de plasticitat sinàptica local que fa que la xarxa s'auto-organitzi en el punt crític.
Seguidament tractem el problema d'inferència aproximada en xarxes probabilístiques mitjançant un algorisme que corregeix la solució obtinguda via belief propagation en grafs cíclics basada en una expansió en sèries. Afegint termes de correcció que corresponen a cicles generals en la xarxa, s'obté el resultat exacte. Introduïm i analitzem numèricament una manera de truncar aquesta sèrie.
Finalment analizem la interacció social en una comunitat d'Internet caracteritzant l'estructura de la xarxa d'usuaris, els fluxes de discussió en forma de comentaris i els patrons de temps de reacció davant una nova notícia.
This thesis is about algorithms and complex phenomena in networks.
In the first part we study a network model of stochastic spiking neurons. We propose a modelling technique based on a mesoscopic description level and show the presence of a phase transition around a critical coupling strength. We derive a local plasticity which drives the network towards the critical point.
We then deal with approximate inference in probabilistic networks. We develop an algorithm which corrects the belief propagation solution for loopy graphs based on a loop series expansion. By adding correction terms, one for each "generalized loop" in the network, the exact result is recovered. We introduce and analyze numerically a particular way of truncating the series.
Finally, we analyze the social interaction of an Internet community by characterizing the structure of the network of users, their discussion threads and the temporal patterns of reaction times to a new post.
Valejo, Alan Demetrius Baria. "Refinamento multinível em redes complexas baseado em similaridade de vizinhança". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-14042015-142526/.
Pełny tekst źródłaIn the context of complex networks, particularly social networks, groups of densely interconnected objects, sparsely linked to other groups are called communities. Detection of these communities has become a field of increasing scientific interest and has numerous practical applications. In this context, several studies have emerged on multilevel strategies for partitioning networks with high amount of vertices and edges. The goal of these strategies is to reduce the cost of partitioning algorithm by applying it on a reduced version of the original network. The possibility for this strategy, yet little explored, is to apply local refinement heuristics to improve the final solution. Most refinement approaches explore general properties of complex networks, such as minimum cut or modularity, however, do not exploit inherent properties of specific domains. For example, social networks are characterized by high clustering coefficient and significant assortativity, hence maximize such characteristics may lead to a good solution and a well-defined community structure. Motivated by this gap, in this thesis, we propose a new refinement algorithm, called RSim, which exploits characteristics of high degree of transitivity and assortativity present in some real networks, particularly social networks. For this, we adopted hybrid similarity measures between pairs of vertices, using the concepts of neighborhood and community information to interpret the similarity between pairs of vertices. A systematic and comparative analysis showed that the RSim statistically outperforms usual refinement algorithms in networks with high clustering coefficient and assortativity. In addition, we assessed the RSim in a real application. In this scenario, the RSim surpasses all evaluated methods in efficiency and effectiveness, considering all the selected data sets.
Müller-Hansen, Finn. "A complex systems perspective on land-use dynamics in the Amazon: patterns, agents, networks". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19476.
Pełny tekst źródłaThis thesis investigates how to model and analyze human-nature interactions using the example of deforestation and land-use change in the Brazilian Amazon. Deforestation of tropical forests threatens the stability of species-rich ecosystems, local weather patterns, and global climate. The three main parts of the thesis study different aspects of this topic using concepts from theoretical physics and network theory. The first part reviews modeling approaches to human decision making and behavior. From the review, networked agent-based models emerge as promising tools to capture the dynamics of social-ecological systems such as the land system. The second part of the thesis combines Markov-chain and cluster analyses to detect patterns in satellite-derived land-cover maps of the Brazilian Amazon. I compute transition rates between different land-cover types and apply clustering algorithms to find spatial patterns. The analysis shows that neighboring subregions undergo similar transitions and identifies clusters corresponding to findings from field surveys. Markov-chain models, parameterized with the transition rates, are used to compute land-cover projections. In the third part, I develop an agent-based model to investigate under which conditions the intensification of cattle ranching can reduce deforestation in the Amazon. The model captures stylized environmental, economic, as well as social processes, and uses heuristic decision theory to represent different land management strategies. A detailed analysis reveals that fast intensification can only lower deforestation rates if local cattle markets saturate. Under other economic conditions intensification may increase deforestation. The contributions of this thesis demonstrate that combining modeling tools from complexity science with social-science theories allow better understanding the emergent dynamics of social-ecological systems, which is a prerequisite for their sustainable management.
Palazzi, Nieves María José. "Structural and dynamical interdependencies in complex networks at meso- and macroscale: nestedness, modularity, and in-block nestedness". Doctoral thesis, Universitat Oberta de Catalunya, 2020. http://hdl.handle.net/10803/671886.
Pełny tekst źródłaMolts sistemes, com el cervell o internet, són considerats complexos: sistemes formats per una gran quantitat d'elements que interactuen entre si, que exhibeixen un comportament col·lectiu que no es pot inferir des de les propietats dels seus elements aïllats. Aquests sistemes s'estudien mitjançant xarxes, en les quals els elements constituents són els nodes, i les interaccions entre ells, els enllaços. La recerca en xarxes s'enfoca principalment a explorar com el comportament dinàmic d'una xarxa està definit per la naturalesa i la topologia de les interaccions entre els seus elements. Aquesta anàlisi sovint es fa en tres escales: la microescala, que estudia les propietats dels nodes individuals; la macroescala, que explora les propietats de tota la xarxa, i la mesoescala, basada en les propietats de grups de nodes. No obstant, la majoria dels estudis se centren només en una escala, tot i la creixent evidència que suggereix que les xarxes sovint exhibeixen estructura a múltiples escales. En aquesta tesi estudiarem les propietats estructurals de les xarxes a escala múltiple. Analitzarem les propietats estructurals dels patrons in-block nested i la seva relació amb els patrons niats i modulars. Finalment, introduirem un model teòric per explorar alguns dels mecanismes que permeten l'emergència d'aquests patrons.
Muchos sistemas, como el cerebro o internet, son considerados complejos: sistemas formados por una gran cantidad de elementos que interactúan entre sí, que exhiben un comportamiento colectivo que no puede inferirse desde las propiedades de sus elementos aislados. Estos sistemas se estudian mediante redes, en las que los elementos constituyentes son los nodos, y las interacciones entre ellos, los enlaces. La investigación en redes se enfoca principalmente a explorar cómo el comportamiento dinámico de una red está definido por la naturaleza y la topología de las interacciones entre sus elementos. Este análisis a menudo se hace en tres escalas: la microescala, que estudia las propiedades de los nodos individuales; la macroescala, que explora las propiedades de toda la red, y la mesoescala, basada en las propiedades de grupos de nodos. No obstante, la mayoría de los estudios se centran solo en una escala, a pesar de la creciente evidencia que sugiere que las redes a menudo exhiben estructura a múltiples escalas. En esta tesis estudiaremos las propiedades estructurales de las redes a escala múltiple. Analizaremos las propiedades estructurales de los patrones in-block nested y su relación con los patrones anidados y modulares. Finalmente, introduciremos un modelo teórico para explorar algunos de los mecanismos que permiten la emergencia de estos patrones.
Tecnologías de la información y de redes
Silva, Juliana Saragiotto. "Métricas de análise de redes sociais e sua aplicação em redes de interação biológicas: metodologia de aplicação e estudos de caso". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3141/tde-22052015-154651/.
Pełny tekst źródłaSeveral researchers have used Interaction Networks resources in the Biodiversity area for analyzing the role of species in network structure their conceptual foundations are the same as those in Social Networks (such as Facebook, LinkedIn, among others). Thus, algorithms, metrics, and statistical and computational resources from the Social Network Analysis (SNA) area are important tools for addressing this issue. Therefore, the aim of this thesis is to propose a methodology for applying SNA metrics to biological interaction network studies in the Biodiversity Informatics domain. The methodology is formalized by means of Business Process Model and Notation (BPMN) and structured in four steps: (i) mapping the data types and the interaction available; (ii) defining the key-questions to be answered and the analysis variable; (iii) choosing the SNA metrics appropriate to the context of the research; and (iv) performing the biological analysis with the support of SNA. As material resources, the SNA metrics were used, as well as a set of computational (such as R packages, Dieta, Pajek and Ucinet software) and Statistical Analysis (Exploratory Data Analysis and Multivariate Data Analysis) tools. This proposal generated a process collaboration with researchers from different knowledge areas, by means of projects developed at the Research Center on Biodiversity and Computing at USP (BioComp-USP), which provided a support base to this methodology. To assess the suitability of this proposal to the real research needs, it was applied to three case studies with microbiological Interaction Networks. The results show the benefits that providing a systematic method to guide the steps of one research can bring to a researcher be it due to the support of the resources recommended, be it by the organization of the research activities. In addition, there is the possibility of applying this methodology to unexplored knowledge fields, such as Agrobiodiversity.
Campos, Ronaldo Ribeiro de. "Redes complexas e ações para compartilhamento de conhecimento: uma análise de redes sociais em um ambiente web para apoio à aprendizagem". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18157/tde-24062014-105925/.
Pełny tekst źródłaKnowledge Management can be defined as a set of processes to capture, store, share and use knowledge. In the context of this work, the knowledge sharing process is accepted as a basic element to Knowledge Management because it represents the interaction among the individuals that compound a network of relationships from where knowledge emerges. The Social Network Analysis (SNA) offers metrics that make possible identify the network relationships and analyze them, but there still needs to identify actions that may reflect on a network structure that allows opportunities for knowledge sharing. The SNA techiniques were applied to anlyze the characteristics of a network compounded by students and created in a web environment which was represented by Facebook© . The methodology applied was based on a quantitative and qualitative study which was classified as a descriptive and exploratory research. Eigthteen periods of network behavior were analysed. The analyses allow us to understand better the representativeness of SNA metrics in the environment of knowledge sharing. A new metric called degree-weight was proposed. Also it was proposed a set of actions related to SNA metrics. A different set of actions was applied to two distinct networks. The results show us different network behaviors for each one of the set of actions. Also it was possible identify better conditions to the knowledge sharing process for one of the network structures.