Gotowa bibliografia na temat „Complex Differential Geometry”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Complex Differential Geometry”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Complex Differential Geometry"
Beggs, Edwin, i S. Paul Smith. "Non-commutative complex differential geometry". Journal of Geometry and Physics 72 (październik 2013): 7–33. http://dx.doi.org/10.1016/j.geomphys.2013.03.018.
Pełny tekst źródłaWang, Shuguang. "Twisted complex geometry". Journal of the Australian Mathematical Society 80, nr 2 (kwiecień 2006): 273–96. http://dx.doi.org/10.1017/s1446788700013112.
Pełny tekst źródłaDonaldson, S. "DIFFERENTIAL GEOMETRY OF COMPLEX VECTOR BUNDLES". Bulletin of the London Mathematical Society 21, nr 1 (styczeń 1989): 104–6. http://dx.doi.org/10.1112/blms/21.1.104.
Pełny tekst źródłaDonaldson, S. K. "Some Numerical Results in Complex Differential Geometry". Pure and Applied Mathematics Quarterly 5, nr 2 (2009): 571–618. http://dx.doi.org/10.4310/pamq.2009.v5.n2.a2.
Pełny tekst źródłaMcKay, B. "Complex nonlinear ordinary differential equations and geometry". Journal of Physics: Conference Series 55 (1.12.2006): 165–70. http://dx.doi.org/10.1088/1742-6596/55/1/016.
Pełny tekst źródłaAnco, Stephen, John Bland i Michael Eastwood. "Some Penrose transforms in complex differential geometry". Science in China Series A: Mathematics 49, nr 11 (listopad 2006): 1599–610. http://dx.doi.org/10.1007/s11425-006-2066-5.
Pełny tekst źródłaOkonek, Christian. "Book Review: Differential geometry of complex vector bundles". Bulletin of the American Mathematical Society 19, nr 2 (1.10.1988): 528–31. http://dx.doi.org/10.1090/s0273-0979-1988-15731-x.
Pełny tekst źródłaMuñoz Velázquez, Vicente. "The Hodge conjecture: The complications of understanding the shape of geometric spaces". Mètode Revista de difusió de la investigació, nr 8 (5.06.2018): 51. http://dx.doi.org/10.7203/metode.0.8253.
Pełny tekst źródłaEveritt, W. N., i L. Markus. "Complex symplectic geometry with applications to ordinary differential operators". Transactions of the American Mathematical Society 351, nr 12 (20.07.1999): 4905–45. http://dx.doi.org/10.1090/s0002-9947-99-02418-6.
Pełny tekst źródłaAleksandrov, A. G. "Residues of Logarithmic Differential Forms in Complex Analysis and Geometry". Analysis in Theory and Applications 30, nr 1 (czerwiec 2014): 34–50. http://dx.doi.org/10.4208/ata.2014.v30.n1.3.
Pełny tekst źródłaRozprawy doktorskie na temat "Complex Differential Geometry"
Lam, Tsz-fung. "Nesting of 2D parts with complex geometry and material heterogeneity". Click to view the E-thesis via HKUTO, 2007. http://sunzi.lib.hku.hk/HKUTO/record/B39557005.
Pełny tekst źródłaLam, Tsz-fung, i 林子峰. "Nesting of 2D parts with complex geometry and material heterogeneity". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2007. http://hub.hku.hk/bib/B39557005.
Pełny tekst źródłaBrown, James Ryan. "Complex and almost-complex structures on six dimensional manifolds". Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4466.
Pełny tekst źródłaThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (February 26, 2007) Vita. Includes bibliographical references.
Kirchhoff-Lukat, Charlotte Sophie. "Aspects of generalized geometry : branes with boundary, blow-ups, brackets and bundles". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/283007.
Pełny tekst źródłaHsu, Siu-fai, i 許紹輝. "Geometric quantization of fermions and complex bosons". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hub.hku.hk/bib/B50434500.
Pełny tekst źródłapublished_or_final_version
Mathematics
Master
Master of Philosophy
Ugail, Hassan. "Time-dependent shape parameterisation of complex geometry using PDE surfaces". Nashboro Press, 2004. http://hdl.handle.net/10454/2686.
Pełny tekst źródłaAlves, Leonardo Soriani 1991. "Geometria complexa generalizada e tópicos relacionados". [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/305829.
Pełny tekst źródłaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática Estatística e Computação Científica
Made available in DSpace on 2018-08-27T10:27:44Z (GMT). No. of bitstreams: 1 Alves_LeonardoSoriani_M.pdf: 542116 bytes, checksum: b4db821b86b39eb2b221b4f63a4c9829 (MD5) Previous issue date: 2015
Resumo: Estudamos geometria complexa generalizada, que tem como casos particulares as geometrias complexa e simplética. Começamos com os seus fundamentos algébricos num espaço vetorial e transportamos essas noções para variedades. Estudamos o colchete de Courant na soma direta dos fibrados tangente e cotangente de uma variedade, que é essencial para definir a integrabilidade das estruturas complexas generalizadas. Verificamos que em nilvariedades de dimensão 6 sempre existe estrutura complexa generalizada invariante à esquerda, ainda que algumas delas não admitam estrutura complexa ou simplética. Estudamos duas noções de T-dualidade e suas relações com geometria complexa generalizada. Por fim recapitulamos a simetria do espelho para curvas elípticas e obtemos uma manifestação de simetria do espelho através de geometria complexa generalizada
Abstract: We study generalized complex geometry, which encompasses complex and symplectic geometry as particular cases. We begin with the algebraic basics on a vector space and then we transport these concepts to manifolds. We study the Courant bracket on the direct sum of tangent and cotangent bundles of a manifold, which is essential to define the integrability of the generalized complex structures. We check that on every $6$ dimensional nilmanifolds there is a left invariant generalized complex structure, even though some of them do not admit complex or symplectic structure. We study two notions of T-dualidade and its relations to generalized complex geometry. We recall mirror symmetry for elliptic curves and derive a manifestation of mirror symmetry from generalized complex geometry
Mestrado
Matematica
Mestre em Matemática
Gabella, Maxime. "The AdS/CFT correspondence and generalized geometry". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:6fd2037e-d0ec-4806-b4db-631eb3693071.
Pełny tekst źródłaMa, Yilin. "Nonlinear Calderón Problem on Stein Manifolds". Thesis, The University of Sydney, 2021. https://hdl.handle.net/2123/25757.
Pełny tekst źródłaLY, KIM HA. "ON TWO APPROACHES FOR PARTIAL DIFFERENTIAL EQUATIONS IN SEVERAL COMPLEX VARIABLES". Doctoral thesis, Università degli studi di Padova, 2014. http://hdl.handle.net/11577/3423534.
Pełny tekst źródłaLo scopo di questa tesi è quello di presentare l'influenza di notazioni di " tipo'' su equazioni differenziali alle derivate parziali in più variabili complesse. Le notazioni di "tipo" qui includono il finito e il tipo di infinito, nel senso di Hormander, e D'Angelo. In particolare, nella prima parte, a condizione tipo finito, prenderemo in considerazione l'esistenza e l'unicità delle soluzioni per il problema del valore iniziale associato ai operatore calore δs+□b su varietà CR. Il tipo finito m è la condizione fondamentale per fornire stime puntuali del nucleo del calore attraverso la teoria degli operatori integrali singolari sviluppate da E. Stein e A. Nagel, D.H. Phong e E. Stein. Prossimo, nella seconda parte, introdurremo un nuovo metodo per indagare la equazioni Cauchy-Riemann δu = φ. Le soluzioni sono costruite con via metodo rappresentazione integrale. Inoltre, mostreremo che il nuovo metodo qui viene applicato anche ben al complesso operatore Monge-Ampère (ddc)n inCn. Il punto principale è che il nostro metodo può passare alcuni risultati noti dal caso di tipo finito al tipo di infinito.
Książki na temat "Complex Differential Geometry"
Kobayashi, Shoshichi. Complex differential geometry. Wyd. 2. Basel: Birkhäuser, 1987.
Znajdź pełny tekst źródłaEbeling, Wolfgang, Klaus Hulek i Knut Smoczyk, red. Complex and Differential Geometry. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8.
Pełny tekst źródłaSiu, Yum Tong, red. Complex differential geometry and nonlinear differential equations. Providence, Rhode Island: American Mathematical Society, 1986. http://dx.doi.org/10.1090/conm/049.
Pełny tekst źródłaChavel, Isaac, i Hershel M. Farkas, red. Differential Geometry and Complex Analysis. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-69828-6.
Pełny tekst źródła1943-, Greene Robert Everist, Yau Shing-Tung 1949- i Summer Research Institute on Differential Geometry (1990 : University of California, Los Angeles), red. Differential geometry. Providence, R.I: American Mathematical Society, 1993.
Znajdź pełny tekst źródłaDifferential geometry of complex vector bundles. [Tokyo]: Iwanami Shoten, 1987.
Znajdź pełny tekst źródłaSummer Research Institute on Several Complex Variables and Complex Geometry (1989 University of California, Santa Cruz). Several complex variables and complex geometry. Redaktorzy Bedford Eric 1947- i American Mathematical Society. Providence, R.I: American Mathematical Society, 1991.
Znajdź pełny tekst źródła1946-, Carlson James A., Clemens C. Herbert 1939- i Morrison David R. 1955-, red. Complex geometry and Lie theory. Providence, R.I: American Mathematical Society, 1991.
Znajdź pełny tekst źródłaChriss, Neil. Representation theory and complex geometry. Boston: Birkhäuser, 1997.
Znajdź pełny tekst źródłaWells, Raymond O'Neil. Differential analysis on complex manifolds. Wyd. 3. New York, NY
Części książek na temat "Complex Differential Geometry"
Greene, Robert E. "Complex differential geometry". W Lecture Notes in Mathematics, 228–88. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/bfb0078614.
Pełny tekst źródłaShiffman, Bernard, i Andrew John Sommese. "Complex Differential Geometry". W Vanishing Theorems on Complex Manifolds, 1–25. Boston, MA: Birkhäuser Boston, 1985. http://dx.doi.org/10.1007/978-1-4899-6680-3_1.
Pełny tekst źródłaWells, Raymond O. "Differential Geometry". W Differential and Complex Geometry: Origins, Abstractions and Embeddings, 17–30. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58184-2_2.
Pełny tekst źródłaHess, Peter O., Mirko Schäfer i Walter Greiner. "Pseudo-complex Differential Geometry". W Pseudo-Complex General Relativity, 217–45. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25061-8_7.
Pełny tekst źródłaMerker, Joël. "Rationality in Differential Algebraic Geometry". W Complex Geometry and Dynamics, 157–209. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20337-9_8.
Pełny tekst źródłaBauer, Ingrid, Fabrizio Catanese i Roberto Pignatelli. "Surfaces of general type with geometric genus zero: a survey". W Complex and Differential Geometry, 1–48. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_1.
Pełny tekst źródłaKühnel, Marco. "Complete Kähler-Einstein manifolds". W Complex and Differential Geometry, 171–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_10.
Pełny tekst źródłaKureš, Miroslav. "Fixed point subalgebras of Weil algebras: from geometric to algebraic questions". W Complex and Differential Geometry, 183–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_11.
Pełny tekst źródłaLee, Yng-Ing. "Self-similar solutions and translating solutions". W Complex and Differential Geometry, 193–203. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_12.
Pełny tekst źródłaLeitner, Felipe. "Aspects of conformal holonomy". W Complex and Differential Geometry, 205–33. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-20300-8_13.
Pełny tekst źródłaStreszczenia konferencji na temat "Complex Differential Geometry"
Gilkey, Peter B., i Raina Ivanova. "Complex IP pseudo-Riemannian algebraic curvature tensors". W PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-13.
Pełny tekst źródłaDjorić, Mirjana, i Masafumi Okumura. "CR submanifolds of maximal CR dimension in complex manifolds". W PDEs, Submanifolds and Affine Differential Geometry. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc57-0-6.
Pełny tekst źródłaMATSUZOE, Hiroshi. "COMPLEX STATISTICAL MANIFOLDS AND COMPLEX AFFINE IMMERSIONS". W 4th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2015. http://dx.doi.org/10.1142/9789814719780_0012.
Pełny tekst źródłaRyan, Patrick J. "INTRINSIC PROPERTIES OF REAL HYPERSURFACES IN COMPLEX SPACE FORMS". W Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0022.
Pełny tekst źródłaLI, SHI-JIE. "SUBMANIFOLDS WITH POINTWISE PLANAR NORMAL SECTIONS IN A COMPLEX PROJECTIVE SPACE". W Differential Geometry in Honor of Professor S S Chern. WORLD SCIENTIFIC, 2000. http://dx.doi.org/10.1142/9789812792051_0012.
Pełny tekst źródłaANDO, Naoya. "COMPLEX CURVES AND ISOTROPIC MINIMAL SURFACES IN HYPERKÄHLER 4-MANIFOLDS". W 6th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811206696_0004.
Pełny tekst źródłaDimiev, Stancho, i Kouei Sekigawa. "Topics in Complex Analysis, Differential Geometry and Mathematical Physics". W Third International Workshop on Complex Structures and Vector Fields. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814529518.
Pełny tekst źródłaARVANITOYEORGOS, Andreas, Yusuke SAKANE i Marina STATHA. "HOMOGENEOUS EINSTEIN METRICS ON COMPLEX STIEFEL MANIFOLDS AND SPECIAL UNITARY GROUPS". W 5th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2017. http://dx.doi.org/10.1142/9789813220911_0001.
Pełny tekst źródłaMAEDA, SADAHIRO, i TOSHIAKI ADACHI. "DIFFERENTIAL GEOMETRY OF CIRCLES IN A COMPLEX PROJECTIVE SPACE". W Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810038_0013.
Pełny tekst źródłaBAO, Tuya, i Toshiaki ADACHI. "EXTRINSIC SHAPES OF TRAJECTORIES ON REAL HYPERSURFACES OF TYPE (B) IN A COMPLEX HYPERBOLIC SPACE". W 6th International Colloquium on Differential Geometry and its Related Fields. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789811206696_0012.
Pełny tekst źródłaRaporty organizacyjne na temat "Complex Differential Geometry"
Snyder, Victor A., Dani Or, Amos Hadas i S. Assouline. Characterization of Post-Tillage Soil Fragmentation and Rejoining Affecting Soil Pore Space Evolution and Transport Properties. United States Department of Agriculture, kwiecień 2002. http://dx.doi.org/10.32747/2002.7580670.bard.
Pełny tekst źródła