Gotowa bibliografia na temat „Combustion Simulations”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Combustion Simulations”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Combustion Simulations"
Rowan, Steven L., Ismail B. Celik, Albio D. Gutierrez i Jose Escobar Vargas. "A Reduced Order Model for the Design of Oxy-Coal Combustion Systems". Journal of Combustion 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/943568.
Pełny tekst źródłaSikorski, K., Kwan Liu Ma, Philip J. Smith i Bradley R. Adams. "Distributed combustion simulations". Energy & Fuels 7, nr 6 (listopad 1993): 902–5. http://dx.doi.org/10.1021/ef00042a029.
Pełny tekst źródłaÅkerblom, Arvid, Francesco Pignatelli i Christer Fureby. "Numerical Simulations of Spray Combustion in Jet Engines". Aerospace 9, nr 12 (16.12.2022): 838. http://dx.doi.org/10.3390/aerospace9120838.
Pełny tekst źródłaTamanampudi, Gowtham Manikanta Reddy, Swanand Sardeshmukh, William Anderson i Cheng Huang. "Combustion instability modeling using multi-mode flame transfer functions and a nonlinear Euler solver". International Journal of Spray and Combustion Dynamics 12 (styczeń 2020): 175682772095032. http://dx.doi.org/10.1177/1756827720950320.
Pełny tekst źródłaPries, Michael, Andreas Fiolitakis i Peter Gerlinger. "Numerical Investigation of a High Momentum Jet Flame at Elevated Pressure: A Quantitative Validation with Detailed Experimental Data". Journal of the Global Power and Propulsion Society 4 (18.12.2020): 264–73. http://dx.doi.org/10.33737/jgpps/130031.
Pełny tekst źródłaFooladgar, Ehsan, i C. K. Chan. "Large Eddy Simulation of a Swirl-Stabilized Pilot Combustor from Conventional to Flameless Mode". Journal of Combustion 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/8261560.
Pełny tekst źródłaMeng, Nan, i Feng Li. "Large-Eddy Simulations of Unsteady Reaction Flow Characteristics Using Four Geometrical Combustor Models". Aerospace 10, nr 2 (6.02.2023): 147. http://dx.doi.org/10.3390/aerospace10020147.
Pełny tekst źródłaThelen, Bryce C., i Elisa Toulson. "A computational study on the effect of the orifice size on the performance of a turbulent jet ignition system". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 231, nr 4 (20.08.2016): 536–54. http://dx.doi.org/10.1177/0954407016659199.
Pełny tekst źródłaZhang, Linqing, Juntao Chang, Wenxiang Cai, Hui Sun i Yingkun Li. "A Preliminary Research on Combustion Characteristics of a Novel-Type Scramjet Combustor". International Journal of Aerospace Engineering 2022 (30.12.2022): 1–18. http://dx.doi.org/10.1155/2022/3930440.
Pełny tekst źródłaLiu, Hao, Wen Yan Song i Shun Hua Yang. "Large Eddy Simulation of Hydrogen-Fueled Supersonic Combustion with Strut Injection". Applied Mechanics and Materials 66-68 (lipiec 2011): 1769–73. http://dx.doi.org/10.4028/www.scientific.net/amm.66-68.1769.
Pełny tekst źródłaRozprawy doktorskie na temat "Combustion Simulations"
Tajiri, Kazuya. "Simulations of combustion dynamics in pulse combustor". Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12175.
Pełny tekst źródłaSone, Kazuo. "Unsteady simulations of mixing and combustion in internal combustion engines". Thesis, Georgia Institute of Technology, 2001. http://hdl.handle.net/1853/12171.
Pełny tekst źródłaHilbert, Renan. "Etude de la combustion turbulente non prémélangée et partiellement prémélangée par simulations numériques directes". Châtenay-Malabry, Ecole centrale de Paris, 2002. http://www.theses.fr/2002ECAP0856.
Pełny tekst źródłaLindberg, Jenny. "Experiments and simulations of lean methane combustion". Licentiate thesis, Luleå, 2004. http://epubl.luth.se/1402-1757/2004/61.
Pełny tekst źródłaShaw, Rebecca Custis Riehl. "Combining combustion simulations with complex chemical kinetics". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.648248.
Pełny tekst źródłaAubagnac-Karkar, Damien. "Sectional soot modeling for Diesel RANS simulations". Thesis, Châtenay-Malabry, Ecole centrale de Paris, 2014. http://www.theses.fr/2014ECAP0061/document.
Pełny tekst źródłaSoot particles emitted by Diesel engines cause major public health issues. Car manufacturers need models able to predict soot number and size distribution to face the more and more stringent norms.In this context, a soot model based on a sectional description of the solid phase is proposed in this work. First, the type of approach is discussed on the base of state of the art of the current soot models. Then, the proposed model is described. At every location and time-step of the simulation, soot particles are split into sections depending on their size. Each section evolution is governed by: • a transport equation;• source terms representing its interaction with the gaseous phase (particle inception, condensation surface growth and oxidation);• source terms representing its interaction with other sections (condensation and coagulation).This soot model requires the knowledge of local and instantaneous concentrations of minor species involved in soot formation and evolution. The kinetic schemes including these species are composed of hundreds of species and thousands of reactions. It is not possible to use them in 3D-CFD simulations. Therefore, the tabulated approach VPTHC (Variable Pressure Tabulated Homogeneous Chemistry) has been proposed. This approach is based on the ADF approach (Approximated Diffusion Flame) which has been simplified in order to be coupled with the sectional soot model. First, this tabulated combustion model ability to reproduce detailed kinetic scheme prediction has been validated on variable pressure and mixture fraction homogeneous reactors designed for this purpose. Then, the models predictions have been compared to experimental measurement of soot yields and particle size distributions of Diesel engines. The validation database includes variations of injection duration, injection pressure and EGR rate performed with a commercial Diesel fuel as well as the surrogate used in simulations. The model predictions agree with the experiments for most cases. Finally, the model predictions have been compared on a more detailed and academical case with the Engine Combustion Network Spray A, a high pressure Diesel spray. This final experimental validation provides data to evaluate the model predictions in transient conditions
Calhoon, William Henry Jr. "On subgrid combustion modeling for large-eddy simulations". Diss., Georgia Institute of Technology, 1996. http://hdl.handle.net/1853/12336.
Pełny tekst źródłaFujita, Akitoshi. "Numerical Simulations of Spray Combustion and Droplet Evaporation". 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142213.
Pełny tekst źródłaBarsanti, Patricia Sylvia. "Simulations of confined turbulent explosions". Thesis, University of Cambridge, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.261538.
Pełny tekst źródłaCorrea, Chrys. "Combustion simulations in Diesel engines using reduced reaction mechanisms". [S.l. : s.n.], 2000. http://deposit.ddb.de/cgi-bin/dokserv?idn=961521937.
Pełny tekst źródłaKsiążki na temat "Combustion Simulations"
Singh, Akhilendra Pratap, Pravesh Chandra Shukla, Joonsik Hwang i Avinash Kumar Agarwal, red. Simulations and Optical Diagnostics for Internal Combustion Engines. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-0335-1.
Pełny tekst źródłaPitsch, Heinz, i Antonio Attili, red. Data Analysis for Direct Numerical Simulations of Turbulent Combustion. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44718-2.
Pełny tekst źródłaMerci, Bart, Dirk Roekaerts i Amsini Sadiki, red. Experiments and Numerical Simulations of Diluted Spray Turbulent Combustion. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-1409-0.
Pełny tekst źródłaMerci, Bart, i Eva Gutheil, red. Experiments and Numerical Simulations of Turbulent Combustion of Diluted Sprays. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-04678-5.
Pełny tekst źródłaCaton, Jerald A., red. An Introduction to Thermodynamic Cycle Simulations for Internal Combustion Engines. Chichester, UK: John Wiley & Sons, Ltd, 2015. http://dx.doi.org/10.1002/9781119037576.
Pełny tekst źródłaCaton, J. A. An introduction to thermodynamic cycle simulations for internal combustion engines. Chichester, West Sussex: John Wiley & Sons Inc, 2015.
Znajdź pełny tekst źródłaRocker, M. Modeling on nonacoustic combustion instability in simulations of hybrid motor tests. Marshall Space Flight Center, Ala: National Aeronautics and Space Administration, Marshall Space Flight Center, 2000.
Znajdź pełny tekst źródłaGirimaji, Sharath S. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: Institute for Computer Applications in Science and Engineering, 1993.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Znajdź pełny tekst źródłaCenter, Langley Research, red. Simulations of diffusion-reaction equations with implications to turbulent combustion modeling. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Combustion Simulations"
Durst, Bodo. "3D Supercharging Simulations". W Combustion Engines Development, 585–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-14094-5_15.
Pełny tekst źródłaStreett, Craig L. "Group Summary: Simulations I". W Transition, Turbulence and Combustion, 279–80. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_26.
Pełny tekst źródłaErlebacher, Gordon. "Group Summary: Simulations II". W Transition, Turbulence and Combustion, 341–42. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1032-7_33.
Pełny tekst źródłaRay, J., R. Armstrong, C. Safta, B. J. Debusschere, B. A. Allan i H. N. Najm. "Computational Frameworks for Advanced Combustion Simulations". W Turbulent Combustion Modeling, 409–37. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_17.
Pełny tekst źródłaWinke, Florian. "Internal Combustion Engine". W Transient Effects in Simulations of Hybrid Electric Drivetrains, 63–96. Wiesbaden: Springer Fachmedien Wiesbaden, 2018. http://dx.doi.org/10.1007/978-3-658-22554-4_3.
Pełny tekst źródłaSeitz, Timo, Ansgar Lechtenberg i Peter Gerlinger. "Rocket Combustion Chamber Simulations Using High-Order Methods". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 381–94. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_24.
Pełny tekst źródłaFru, G., H. Shalaby, A. Laverdant, C. Zistl, G. Janiga i D. Thévenin. "Direct Numerical Simulations of turbulent flames to analyze flame/acoustic interactions". W Combustion Noise, 239–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-02038-4_9.
Pełny tekst źródłaTraxinger, Christoph, Julian Zips, Christian Stemmer i Michael Pfitzner. "Numerical Investigation of Injection, Mixing and Combustion in Rocket Engines Under High-Pressure Conditions". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 209–21. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53847-7_13.
Pełny tekst źródłaVeynante, Denis. "Large Eddy Simulations of Turbulent Combustion". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 113–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-00262-5_6.
Pełny tekst źródłaHaworth, D. C., i S. B. Pope. "Transported Probability Density Function Methods for Reynolds-Averaged and Large-Eddy Simulations". W Turbulent Combustion Modeling, 119–42. Dordrecht: Springer Netherlands, 2011. http://dx.doi.org/10.1007/978-94-007-0412-1_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Combustion Simulations"
Chen, Jacqueline. "Combustion---Terascale direct numerical simulations of turbulent combustion". W the 2006 ACM/IEEE conference. New York, New York, USA: ACM Press, 2006. http://dx.doi.org/10.1145/1188455.1188513.
Pełny tekst źródła"NEURAL NETWORKS IN COMBUSTION SIMULATIONS". W International Conference on Neural Computation. SciTePress - Science and and Technology Publications, 2010. http://dx.doi.org/10.5220/0003073904060410.
Pełny tekst źródłaIngenito, Antonella, Claudio Bruno, Eugenio Giacomazzi i Johan Steelant. "Supersonic Combustion: Modelling and Simulations". W 14th AIAA/AHI Space Planes and Hypersonic Systems and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.2006-8035.
Pełny tekst źródłaGonzalez, Esteban. "Numerical Simulations of Thermoacoustic Combustion Instabilities in the Volvo Combustor". W 53rd AIAA/SAE/ASEE Joint Propulsion Conference. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2017. http://dx.doi.org/10.2514/6.2017-4686.
Pełny tekst źródłaDuwig, Christophe, Jan Fredriksson i Torsten Fransson. "Adaptation of a Combustion Chamber for Gasified Biomass Combustion: Numerical Simulations". W ASME 2000 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/imece2000-1658.
Pełny tekst źródłaPoinsot, Thierry, Christian Angelberger, Fokion Egolfopoulos i Denis Veynante. "LARGE EDDY SIMULATIONS OF COMBUSTION INSTABILITIES". W First Symposium on Turbulence and Shear Flow Phenomena. Connecticut: Begellhouse, 1999. http://dx.doi.org/10.1615/tsfp1.10.
Pełny tekst źródłaMENON, SURESH, i WEN-HUEI JOU. "Large-eddy simulations of combustion instability in an axisymmetric ramjet combustor". W 28th Aerospace Sciences Meeting. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1990. http://dx.doi.org/10.2514/6.1990-267.
Pełny tekst źródłaSingh, Kapil, Bala Varatharajan, Ertan Yilmaz, Fei Han i Kwanwoo Kim. "Effect of Hydrogen Combustion on the Combustion Dynamics of a Natural Gas Combustor". W ASME Turbo Expo 2008: Power for Land, Sea, and Air. ASMEDC, 2008. http://dx.doi.org/10.1115/gt2008-51343.
Pełny tekst źródłaSperotto de Quadros, Regis, Alvaro de Bortoli i Rafaela Sehnem. "Carbon monoxide combustion simulations by reduced mechanism". W 24th ABCM International Congress of Mechanical Engineering. ABCM, 2017. http://dx.doi.org/10.26678/abcm.cobem2017.cob17-0618.
Pełny tekst źródłaIngenito, Antonella, Claudio Bruno, Eugenio Giacomazzi i Johan Steelant. "Advance in Supersonic Combustion Modeling and Simulations". W 45th AIAA Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2007. http://dx.doi.org/10.2514/6.2007-837.
Pełny tekst źródłaRaporty organizacyjne na temat "Combustion Simulations"
Pope, Stephen B., i Steven R. Lantz. Terascale Cluster for Advanced Turbulent Combustion Simulations. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2008. http://dx.doi.org/10.21236/ada486130.
Pełny tekst źródłaPitsch, Heinz. Advanced Chemical Modeling for Turbulent Combustion Simulations. Fort Belvoir, VA: Defense Technical Information Center, maj 2012. http://dx.doi.org/10.21236/ada567579.
Pełny tekst źródłaRutland, Christopher J. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations. Office of Scientific and Technical Information (OSTI), kwiecień 2009. http://dx.doi.org/10.2172/951592.
Pełny tekst źródłaCloutman, L. D. What is Air? A Standard Model for Combustion Simulations. Office of Scientific and Technical Information (OSTI), sierpień 2001. http://dx.doi.org/10.2172/15005296.
Pełny tekst źródłaRaghurama Reddy, Roberto Gomez, Junwoo Lim, Yang Wang i Sergiu Sanielevici. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/834581.
Pełny tekst źródłaHong G. Im, Arnaud Trouve, Christopher J. Rutland i Jacqueline H. Chen. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), luty 2009. http://dx.doi.org/10.2172/946730.
Pełny tekst źródłaIm, Hong G., Arnaud Trouve, Christopher J. Rutland i Jacqueline H. Chen. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry. Office of Scientific and Technical Information (OSTI), sierpień 2012. http://dx.doi.org/10.2172/1048137.
Pełny tekst źródłaMenon, S. Active Control of Combustion Instability in a Ramjet Using Large-Eddy Simulations. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 1992. http://dx.doi.org/10.21236/ada255226.
Pełny tekst źródłaFlowers, Daniel L. Combustion in Homogeneous Charge Compression Ignition Engines: Experiments and Detailed Chemical Kinetic Simulations. Office of Scientific and Technical Information (OSTI), czerwiec 2002. http://dx.doi.org/10.2172/15006123.
Pełny tekst źródłaLawson, Matthew, Bert J. Debusschere, Habib N. Najm, Khachik Sargsyan i Jonathan H. Frank. Uncertainty quantification of cinematic imaging for development of predictive simulations of turbulent combustion. Office of Scientific and Technical Information (OSTI), wrzesień 2010. http://dx.doi.org/10.2172/1011617.
Pełny tekst źródła