Gotowa bibliografia na temat „Combustion devices”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Combustion devices”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Combustion devices"
Yuan, Yi Xiang, Peng Fu Xie, Wen Yu Cao, Cong Chen, Chao Yu, De Jun Zhan i Chun Qing Tan. "A Preliminary Study on Lean Blowout of One Combustion Stability Device". Advanced Materials Research 732-733 (sierpień 2013): 63–66. http://dx.doi.org/10.4028/www.scientific.net/amr.732-733.63.
Pełny tekst źródłaZhou, Jun, Peter Zotter, Emily A. Bruns, Giulia Stefenelli, Deepika Bhattu, Samuel Brown, Amelie Bertrand i in. "Particle-bound reactive oxygen species (PB-ROS) emissions and formation pathways in residential wood smoke under different combustion and aging conditions". Atmospheric Chemistry and Physics 18, nr 10 (18.05.2018): 6985–7000. http://dx.doi.org/10.5194/acp-18-6985-2018.
Pełny tekst źródłaNair, Vineeth, i R. I. Sujith. "Multifractality in combustion noise: predicting an impending combustion instability". Journal of Fluid Mechanics 747 (23.04.2014): 635–55. http://dx.doi.org/10.1017/jfm.2014.171.
Pełny tekst źródłaAbdul Rahman, Mohd Rosdzimin, Wan Mohd Amin Wan Shuib, Mohd Rashdan Saad, Azam Che Idris i Hasan Mohd Faizal. "Combustion Characteristic inside Micro Channel Combustor". Jurnal Kejuruteraan si4, nr 1 (30.09.2021): 109–16. http://dx.doi.org/10.17576/jkukm-2021-si4(1)-14.
Pełny tekst źródłaDuan, Run Ze, Zhi Ying Chen i Li Jun Yang. "Modeling and Simulation of Combustion Chamber". Applied Mechanics and Materials 513-517 (luty 2014): 3543–47. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.3543.
Pełny tekst źródłaStollmann, V., Yu R. Nikitin i A. O. Shoshin. "RELAZ Devices". Vestnik IzhGTU imeni M.T. Kalashnikova 25, nr 2 (28.06.2022): 79–88. http://dx.doi.org/10.22213/2413-1172-2022-2-79-88.
Pełny tekst źródłaSpadaccini, C. M., A. Mehra, J. Lee, X. Zhang, S. Lukachko i I. A. Waitz. "High Power Density Silicon Combustion Systems for Micro Gas Turbine Engines". Journal of Engineering for Gas Turbines and Power 125, nr 3 (1.07.2003): 709–19. http://dx.doi.org/10.1115/1.1586312.
Pełny tekst źródłaSinitsyn, Anton A. "Study of Operation of Power-Generating Devices of Gaseous Fuels Combustion". Applied Mechanics and Materials 725-726 (styczeń 2015): 1417–22. http://dx.doi.org/10.4028/www.scientific.net/amm.725-726.1417.
Pełny tekst źródłaKrpec, Kamil, Jiří Horák, Lubomír Martiník, Petr Kubesa, František Hopan, Zdeněk Kysučan, Jiří Kremer i Zuzana Jankovská. "Potential Utilization of Catalyst for the Combustion of Wood in Households". Advanced Materials Research 911 (marzec 2014): 388–92. http://dx.doi.org/10.4028/www.scientific.net/amr.911.388.
Pełny tekst źródłaBiryukov, A. B., i Ya S. Vlasov. "Analysis of modern trends in recuperative burners perfection". Ferrous Metallurgy. Bulletin of Scientific , Technical and Economic Information 75, nr 8 (6.09.2019): 971–78. http://dx.doi.org/10.32339/0135-5910-2019-8-971-978.
Pełny tekst źródłaRozprawy doktorskie na temat "Combustion devices"
Mamani, A., G. Quispe i C. Raymundo-Ibañeez. "Electromechanical Device for Temperature Control of Internal Combustion Engines". IOP Publishing Ltd, 2019. http://hdl.handle.net/10757/656303.
Pełny tekst źródłaDouasbin, Quentin. "Acoustic waves in combustion devices : interactions with flames and boundary conditions". Phd thesis, Toulouse, INPT, 2018. http://oatao.univ-toulouse.fr/20204/7/douasbin_quentin.pdf.
Pełny tekst źródłaJunior, Avandelino Santana. "Investigation of passive control devices to suppress acoustic instability in combustion chambers". Instituto Tecnológico de Aeronáutica, 2008. http://www.bd.bibl.ita.br/tde_busca/arquivo.php?codArquivo=590.
Pełny tekst źródłaSchöning, Christoph. "Virtual prototyping and optimisation of microwave ignition devices for the internal combustion engine". Thesis, University of Glasgow, 2014. http://theses.gla.ac.uk/5487/.
Pełny tekst źródłaRajendar, Ashok. "Internal flow effects on performance of combustion powered actuators". Thesis, Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42901.
Pełny tekst źródłaMelendez-Cervantes, Carlos. "On the use of sound transmission in the measurement of temperature in combustion devices". Thesis, University of Sheffield, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341842.
Pełny tekst źródłaElsari, Mohamed Elhadi. "The use of passive devices for the suppression of combustion oscillations in gas-fired appliances". Thesis, University of Hull, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.440658.
Pełny tekst źródłaWarta, Brett James. "Characterization of High Momentum Flux Combustion Powered Fluidic Actuators for High Speed Flow Control". Thesis, Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/19873.
Pełny tekst źródłaWijewardane, M. Anusha. "Exhaust system energy management of internal combustion engines". Thesis, Loughborough University, 2012. https://dspace.lboro.ac.uk/2134/9829.
Pełny tekst źródłaAvdić, Amer [Verfasser]. "Development and Application of Numerical Methods for the Simulation of Advanced Combustion Processes within Complex Devices / Amer Avdic". Aachen : Shaker, 2015. http://d-nb.info/1067734716/34.
Pełny tekst źródłaKsiążki na temat "Combustion devices"
Center for Environmental Research Information (U.S.), red. Operational parameters for hazardous waste combustion devices. Cincinnati, Ohio: Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, 1994.
Znajdź pełny tekst źródłaCenter for Environmental Research Information (U.S.), red. Operational parameters for hazardous waste combustion devices. Cincinnati, Ohio: Center for Environmental Research Information, Office of Research and Development, U.S. Environmental Protection Agency, 1994.
Znajdź pełny tekst źródłaP, Mercer Stewart, i United States. National Aeronautics and Space Administration., red. ALS rocket engine combustion devices: Design and demonstration. Sacramento, CA: Aerojet TechSystems, 1989.
Znajdź pełny tekst źródłaGurstelle, William. The practical pyromaniac: Build fire tornadoes, one-candlepower engines, great balls of fire, and more incendiary devices. Chicago: Chicago Review Press, 2011.
Znajdź pełny tekst źródłaEngineers, Society of Automotive, i International Fall Fuels & Lubricants Meeting & Exposition (1996 : San Antonio, Tex.), red. Diesel engine combustion and emission control. Warrendale, PA: Society of Automotive Engineers, 1996.
Znajdź pełny tekst źródłaEngineers, Society of Automotive, red. Reducing emissions from diesel combustion. Warrendale, PA: Society of Automotive Engineers, 1992.
Znajdź pełny tekst źródłaSAE Gasketing Standards Committee., red. Additional guidelines for internal combustion engine gaskets--liquid sealing. Warrendale, PA: Society of Autmotive Engineers, 1993.
Znajdź pełny tekst źródłaEnergy-Sources Technology Conference and Exhibition (1989 Houston, Tex.). Advances in engine emissions control technology. New York, N.Y. (345 E. 47th St., New York 10017): American Society of Mechanical Engineers, 1988.
Znajdź pełny tekst źródłaEnergy-Sources Technology Conference and Exhibition (12th 1989 Houston, Tex.). Advances in engineemissions control technology. New York, N.Y: American Society of Mechanical Engineers, 1988.
Znajdź pełny tekst źródłaBighouse, Roger D. Evaluation of emissions and energy efficiencies of residential wood combustion devices using manufactured fuels. Salem, OR: Oregon Dept. of Energy, 1993.
Znajdź pełny tekst źródłaCzęści książek na temat "Combustion devices"
Fraenkel, Peter, i Jeremy Thake. "9. Internal combustion engines". W Water Lifting Devices, 191–243. Rugby, Warwickshire United Kingdom: Practical Action Publishing, 2006. http://dx.doi.org/10.3362/9781780446370.009.
Pełny tekst źródłaBrown, Andrew M. "Structural Dynamics of LRE Combustion Devices". W Synthesis Lectures on Mechanical Engineering, 115–30. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18207-5_4.
Pełny tekst źródłaRubtsov, Nickolai, Mikhail Alymov, Alexander Kalinin, Alexey Vinogradov, Alexey Rodionov i Kirill Troshin. "Optoelectronic devices and methods for studying combustion and explosion processes". W Remote studies of combustion and explosion processes based on optoelectronic methods, 29–45. au: AUS PUBLISHERS, 2022. http://dx.doi.org/10.26526/chapter_62876066b5f307.71425279.
Pełny tekst źródłaKailasanath, Kazhikathra. "Recent Developments in the Research on Pressure-Gain Combustion Devices". W Innovations in Sustainable Energy and Cleaner Environment, 3–21. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-9012-8_1.
Pełny tekst źródłaFakeye, A. B., S. O. Oyedepo, O. S. I. Fayomi, Joseph O. Dirisu i N. E. Udoye. "Fossil Fuel Combustion, Conversion to Near-Zero Waste Through Organic Rankine Cycle". W Handbook of Smart Materials, Technologies, and Devices, 2057–75. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-84205-5_69.
Pełny tekst źródłaFakeye, A. B., S. O. Oyedepo, O. S. I. Fayomi, J. O. Dirisu i N. E. Udoye. "Fossil Fuel Combustion, Conversion to Near-Zero Waste Through Organic Rankine Cycle". W Handbook of Smart Materials, Technologies, and Devices, 1–19. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-58675-1_69-1.
Pełny tekst źródłaChaupatnaik, Anshuman, i Prabeer Barpanda. "Combustion Synthesized MLi2Ti6O14 (M = Sr, Ba, Pb) Titanate Anodes for Lithium-Ion Batteries". W Recent Research Trends in Energy Storage Devices, 9–17. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6394-2_2.
Pełny tekst źródłaBobusch, Bernhard C., Phillip Berndt, Christian O. Paschereit i Rupert Klein. "Investigation of Fluidic Devices for Mixing Enhancement for the Shockless Explosion Combustion Process". W Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 281–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-11967-0_18.
Pełny tekst źródłaBhattacharya, Atmadeep, i Amitava Datta. "Laminar Burning Velocity of Biomass-Derived Fuels and Its Significance in Combustion Devices". W Sustainable Energy Technology and Policies, 359–78. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8393-8_16.
Pełny tekst źródłaDăscălescu, Spiridon-Cristian-Dan, Marius Receanu, Laurenţiu Dimitriu i Liliana Vornicu-Albu. "Researches on Cooling Air Flow Control Devices Using on Cars with Internal Combustion Engines". W CONAT 2016 International Congress of Automotive and Transport Engineering, 287–94. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45447-4_32.
Pełny tekst źródłaStreszczenia konferencji na temat "Combustion devices"
Frey, Manuel, Thomas Aichner, Josef Görgen, Blazenko Ivancic, Björn Kniesner i Oliver Knab. "Modeling of Rocket Combustion Devices". W 10th AIAA/ASME Joint Thermophysics and Heat Transfer Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2010. http://dx.doi.org/10.2514/6.2010-4329.
Pełny tekst źródłaMyers, Michael J., John D. Myers, Baoping Guo, Chengxin Yang i Christopher R. Hardy. "Practical internal combustion engine laser spark plug development". W Photonic Devices + Applications, redaktorzy William J. Thomes, Jr. i Fred M. Dickey. SPIE, 2007. http://dx.doi.org/10.1117/12.728644.
Pełny tekst źródłaHasan, A. M., R. Khan, E. Schutte, P. Verhaart i K. Krishna Prasad. "APPLICATION OF DOWNDRAFT COMBUSTION TO WOODBURNING DEVICES". W International Heat Transfer Conference 9. Connecticut: Begellhouse, 1990. http://dx.doi.org/10.1615/ihtc9.620.
Pełny tekst źródłaLezuo, Michael, i Oskar Haidn. "Transpiration cooling in H2/O2-combustion devices". W 32nd Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1996. http://dx.doi.org/10.2514/6.1996-2581.
Pełny tekst źródłaFrendi, Abdelkader, Tom Nesman i Francisco Canabal. "Control of Combustion-Instabilities Through Various Passive Devices". W 11th AIAA/CEAS Aeroacoustics Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2005. http://dx.doi.org/10.2514/6.2005-2832.
Pełny tekst źródłaSkrifvars, Bengt-Johan, Patrik Yrjas, Mikko Hupa, Martti Aho, Jaani Silvennoinen, Risto Etela¨aho, Juha Kouki i Kari Saari. "Fireside Deposit Formation in Biomass Fired FBC: A Comparison Between Tests Performed in Three Significantly Different Sized Combustors". W 17th International Conference on Fluidized Bed Combustion. ASMEDC, 2003. http://dx.doi.org/10.1115/fbc2003-074.
Pełny tekst źródłaPOLÁČIK, Jan, Barbora SCHÜLLEROVÁ, Jiří POSPÍŠIL i Vladimír ADAMEC. "FINE AND ULTRA FINE PARTICLES FORMED DURING THE BIOMASS COMBUSTION IN SMALL COMBUSTION DEVICES". W NANOCON 2019. TANGER Ltd., 2020. http://dx.doi.org/10.37904/nanocon.2019.8694.
Pełny tekst źródłaRobinson, Matthew C., i Nigel N. Clark. "Fundamental Explorations of Spring-Varied, Free Piston Linear Engine Devices". W ASME 2014 Internal Combustion Engine Division Fall Technical Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/icef2014-5432.
Pełny tekst źródłaSaddawi, Salwan David, Timoleon Kipouros i Mark Savill. "Computational Engineering Design for Micro-Scale Combustion Devices: A Thermally Improved Configuration". W ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94599.
Pełny tekst źródłaKale, M. A., C. P. Joshi, S. V. Moharil, P. Predeep, Mrinal Thakur i M. K. Ravi Varma. "Combustion Synthesis of Magnesium Aluminate". W OPTICS: PHENOMENA, MATERIALS, DEVICES, AND CHARACTERIZATION: OPTICS 2011: International Conference on Light. AIP, 2011. http://dx.doi.org/10.1063/1.3643682.
Pełny tekst źródłaRaporty organizacyjne na temat "Combustion devices"
Shallcross, D. C. Devices and methods for in-situ combustion ignition. Office of Scientific and Technical Information (OSTI), październik 1989. http://dx.doi.org/10.2172/5568674.
Pełny tekst źródłaRuby N. Ghosh, Reza Loloee, Roger G. Tobin i Yung Ho Kahng. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions. Office of Scientific and Technical Information (OSTI), kwiecień 2006. http://dx.doi.org/10.2172/882583.
Pełny tekst źródłaRuby N. Ghosh, Peter Tobias i Roger G. Tobin. SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS. Office of Scientific and Technical Information (OSTI), październik 2004. http://dx.doi.org/10.2172/835632.
Pełny tekst źródłaRuby N. Ghosh, Peter Tobias i Roger G. Tobin. SILICON CARBIDE MICRO-DEVICES FOR COMBUSTION GAS SENSING UNDER HARSH CONDITIONS. Office of Scientific and Technical Information (OSTI), kwiecień 2004. http://dx.doi.org/10.2172/824012.
Pełny tekst źródłaRuby Ghosh, Reza Loloee i Roger Tobin. Silicon Carbide Micro-devices for Combustion Gas Sensing under Harsh Conditions. Office of Scientific and Technical Information (OSTI), wrzesień 2008. http://dx.doi.org/10.2172/961522.
Pełny tekst źródłaRuby N. Ghosh i Peter Tobias. DEVELOPMENT OF SiC DEVICES FOR DIAGNOSTICS AND CONTROL OF COMBUSTION PRODUCTS IN ENERGY PLANT ENVIRONMENTS. Office of Scientific and Technical Information (OSTI), grudzień 2003. http://dx.doi.org/10.2172/823389.
Pełny tekst źródłaHowland, Heathcliff. GRI-04-0066A Pilot Project Addendum to Functional Specifications. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2005. http://dx.doi.org/10.55274/r0012115.
Pełny tekst źródłaFunk, D. J., D. S. Moore, R. K. Mongia, E. Tomita, F. K. Hsu, L. Talbot, R. W. Dibble, J. Lovett i Akira Yamazaki. Development of inexpensive continuous emission monitors for feedback control of combustion devices that minimize greenhouse gases, toxic emissions, and ozone damaging products. Office of Scientific and Technical Information (OSTI), listopad 1998. http://dx.doi.org/10.2172/677028.
Pełny tekst źródłaBajwa, Abdullah, i Timothy Jacobs. PR-457-17201-R02 Residual Gas Fraction Estimation Based on Measured Engine Parameters. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), luty 2019. http://dx.doi.org/10.55274/r0011558.
Pełny tekst źródłaNowlin, Jacob, Kevin Wallace, Kyle Beurlot, Mark Patterson i Timothy Jacobs. PR-457-21206-R01 CFD Study of Prechamber NOx Production Mechanisms. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), lipiec 2023. http://dx.doi.org/10.55274/r0000027.
Pełny tekst źródła