Rozprawy doktorskie na temat „Combinatorics”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „Combinatorics”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Milicevic, Luka. "Topics in metric geometry, combinatorial geometry, extremal combinatorics and additive combinatorics". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/273375.
Pełny tekst źródłaLopes, Martins Taísa. "Theory of combinatorial limits and extremal combinatorics". Thesis, University of Warwick, 2018. http://wrap.warwick.ac.uk/113462/.
Pełny tekst źródłaYue, Guangyi. "Combinatorics of affine Springer fibers and combinatorial wall-crossing". Thesis, Massachusetts Institute of Technology, 2020. https://hdl.handle.net/1721.1/126939.
Pełny tekst źródłaCataloged from the official PDF of thesis.
Includes bibliographical references (pages 149-152).
This thesis deals with several combinatorial problems in representation theory. The first part of the thesis studies the combinatorics of affine Springer fibers of type A. In particular, we give an explicit description of irreducible components of Fl[subscript tS] and calculate the relative positions between two components. We also study the lowest two-sided Kazhdan-Lusztig cell and establish a connection with the affine Springer fibers, which is compatible with the affine matrix ball construction algorithm. The results also prove a special case of Lusztig's conjecture. The work in this part include joint work with Pablo Boixeda. In the second part, we define the combinatorial wall-crossing transformation and the generalized column regularization on partitions and prove that a certain composition of these two transformations has the same effect on the one-row partition. This result gives a special situation where column regularization, can be used to understand the complicated Mullineux map, and also proves a special case of Bezrukavnikov's conjecture. Furthermore, we prove a condition under which the two maps are exactly the same, generalizing the work of Bessenrodt, Olsson and Xu. The combinatorial constructions is related to the Iwahori-Hecke algebra and the global crystal basis of the basic [ ... ]-module and we provide several conjectures regarding the q-decomposition numbers and generalizations of results due to Fayers. This part is a joint work with Panagiotis Dimakis and Allen Wang.
by Guangyi Yue.
Ph. D.
Ph.D. Massachusetts Institute of Technology, Department of Mathematics
Lange, Carsten. "Combinatorial curvatures, group actions, and colourings: aspects of topological combinatorics". [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=973473487.
Pełny tekst źródłaEngström, Alexander. "Topological Combinatorics". Doctoral thesis, KTH, Matematik (Inst.), 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-10383.
Pełny tekst źródłaQC 20100712
Borenstein, Evan. "Additive stucture, rich lines, and exponential set-expansion". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2009. http://hdl.handle.net/1853/29664.
Pełny tekst źródłaCommittee Chair: Croot, Ernie; Committee Member: Costello, Kevin; Committee Member: Lyall, Neil; Committee Member: Tetali, Prasad; Committee Member: Yu, XingXing. Part of the SMARTech Electronic Thesis and Dissertation Collection.
PINTO, RONALD COUTINHO. "INTRODUCTION TO COMBINATORICS". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=24231@1.
Pełny tekst źródłaEste trabalho possui o intuito de desmistificar a dificuldade encontrada por professores e alunos no ensino e aprendizagem do tópico análise combinatória. A razão que motivou este trabalho foi o fato de que boa parte dos professores de matemática do ensino médio e últimas séries do ensino fundamental consideram a Análise Combinatória como algo complicado de ser ensinado; além da questão das dificuldades de entendimento por parte dos alunos que são induzidos à memorização de fórmulas e a aplicação das mesmas à resolução dos exercícios para compreenderem tal conteúdo. Inicialmente apresentaremos alguns conceitos que servirão como auxílio para que o professor possa trabalhar nas atividades propostas a serem desenvolvidas juntamente com os alunos. E ao longo do trabalho iremos falar de alguns tópicos abordados pela análise combinatória sem, inicialmente, mencionarmos fórmulas que servem apenas para serem memorizadas. O mais importante é fazer o aluno trabalhar um problema sugerido através do roteiro e dos conceitos que serão propostos e ao final de alguns exercícios, quando tal aluno tiver entendido tal conceito, ser anunciado a ele que acabou de aprender e entender o conceito em questão, ao invés de memorizar um determinado exercício ou outro, pois sabemos que desta forma, quando o aluno deparar-se com um novo problema, não será capaz de solucioná-lo. Dessa maneira, elaborou-se um roteiro na solução dos exercícios, ou seja, uma forma do professor trabalhar qualquer atividade proposta que envolva problemas de contagem em sala de aula. Enfim, buscou-se com esse trabalho, apresentar aos docentes, estratégias eficientes que podem ser utilizadas para o ensino de combinatória e ajudar os alunos a compreenderem melhor os problemas de contagem utilizando o raciocínio lógico e de contagem.
This work has the intent to explain the difficulties found by teachers and student on teaching and learning combinatorics. The motivation of this work was the fact that most of the Mathematics Teachers of High School consider combinatorics as something complicated to be taught; contributing as well the fact that students are led to memorize the formulas and apply it on exercises so they can understand the subject. Initially we will show some concepts that will help the Teachers to work together with the students on the proposed activities. During the work, we will talk about Combinatorics topics without mentioning formulas that needs memorization only. The most important thing is to make the student work on a suggested problem following a guide and concepts shown and after finishing a few exercises, when the student will show the understanding of the concepts, the Teacher will tell him that he learned that concept, instead of memorizing a specific exercise. Because we know that not doing this, when this student faces a new problem, he will not be able to solve it. Thus it was elaborated a guide to solve exercises and that means a way that the Teacher can work with any proposed activity that has counting in it. Finally, it was sought with this work to show the scholars some efficient strategies that can be used on teaching Combinatorics and help the students to understand better the problems about counting, using logical reasoning and logical counting.
Brunk, Fiona. "Intersection problems in combinatorics". Thesis, St Andrews, 2009. http://hdl.handle.net/10023/765.
Pełny tekst źródłaRedelmeier, Daniel. "Hyperpfaffians in Algebraic Combinatorics". Thesis, University of Waterloo, 2006. http://hdl.handle.net/10012/1055.
Pełny tekst źródłaSanders, Tom. "Topics in arithmetic combinatorics". Thesis, University of Cambridge, 2007. https://www.repository.cam.ac.uk/handle/1810/236994.
Pełny tekst źródłaGreen, B. "Topics in arithmetic combinatorics". Thesis, University of Cambridge, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599660.
Pełny tekst źródłaMrazović, Rudi. "Topics in additive combinatorics". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:50d30d34-5b44-40f2-bb1a-98c2d81e6fe3.
Pełny tekst źródłaKonvalinka, Matjaž. "Combinatorics of determinantal identities". Thesis, Massachusetts Institute of Technology, 2008. http://hdl.handle.net/1721.1/43790.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Includes bibliographical references (p. 125-129).
In this thesis, we apply combinatorial means for proving and generalizing classical determinantal identities. In Chapter 1, we present some historical background and discuss the algebraic framework we employ throughout the thesis. In Chapter 2, we construct a fundamental bijection between certain monomials that proves crucial for most of the results that follow. Chapter 3 studies the first, and possibly the best-known, determinantal identity, the matrix inverse formula, both in the commutative case and in some non-commutative settings (Cartier-Foata variables, right-quantum variables, and their weighted generalizations). We give linear-algebraic and (new) bijective proofs; the latter also give an extension of the Jacobi ratio theorem. Chapter 4 is dedicated to the celebrated MacMahon master theorem. We present numerous generalizations and applications. In Chapter 5, we study another important result, Sylvester's determinantal identity. We not only generalize it to non-commutative cases, we also find a surprising extension that also generalizes the master theorem. Chapter 6 has a slightly different, representation theory flavor; it involves representations of the symmetric group, and also Hecke algebras and their characters. We extend a result on immanants due to Goulden and Jackson to a quantum setting, and reprove certain combinatorial interpretations of the characters of Hecke algebras due to Ram and Remmel.
by Matjaž Konvalinka.
Ph.D.
Zhang, Yan Ph D. Massachusetts Institute of Technology. "The combinatorics of adinkras". Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/84404.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 67-69).
Adinkras are graphical tools created to study representations of supersymmetry algebras. Besides having inherent interest for physicists, the study of adinkras has already shown nontrivial connections with coding theory and Clifford algebras. Furthermore, adinkras offer many easy-to-state and accessible mathematical problems of algebraic, combinatorial, and computational nature. In this work, we make a self-contained treatment of the mathematical foundations of adinkras that slightly generalizes the existing literature. Then, we make new connections to other areas including homological algebra, theory of polytopes, Pfaffian orientations, graph coloring, and poset theory. Selected results include the enumeration of odd dashings for all adinkraizable chromotopologies, the notion of Stiefel-Whitney classes for codes and their vanishing conditions, and the enumeration of all Hamming cube adinkras up through dimension 5.
by Yan Zhang.
Ph.D.
Mainetti, Matteo 1970. "Studies in projective combinatorics". Thesis, Massachusetts Institute of Technology, 1998. http://hdl.handle.net/1721.1/47426.
Pełny tekst źródłaLam, Thomas F. (Thomas Fun Yau). "Combinatorics of ribbon tableaux". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31166.
Pełny tekst źródłaIncludes bibliographical references (p. 83-86).
This thesis begins with the study of a class of symmetric functions ... Which are generating functions for ribbon tableaux (hereon called ribbon functions), first defined by Lascoux, Leclerc and Thibon. Following work of Fomin and Greene, I introduce a set of operators called ribbon Schur operators on the space of partitions. I develop the theory of ribbon functions using these operators in an elementary manner. In particular, I deduce their symmetry and recover a theorem of Kashiwara, Miwa and Stern concerning the Fock space F of the quantum affine algebras ... Using these results, I study the functions ... in analogy with Schur functions, giving: * a Pieri and dual-Pieri formula for ribbon functions, * a ribbon Murnaghan-Nakayama formula, * ribbon Cauchy and dual Cauchy identities, * and a C-algebra isomorphism ... The study of the functions ... will be connected to the Fock space representation F of ...via a linear map [Iota]: F ... which sends the standard basis of F to the ribbon functions. Kashiwara, Miwa and Stern [29] have shown that a copy of the Heisenberg algebra H acts on F commuting with the action of ... Identifying the Fock Space of H with the ring of symmetric functions A(q) I will show that · is in fact a map of H-modules with remarkable properties. In the second part of the thesis, I give a combinatorial generalisation of the classical Boson-Fermion correspondence and explain how the map [phi] is an example of this more general phenomena. I show how certain properties of many families of symmetric functions arise naturally from representations of Heisenberg algebras. The main properties I consider are a tableaux-like definition, a Pieri-style rule and a Cauchy-style identity.
(cont.) Families of symmetric functions which can be viewed in this manner include Schur functions, Hall- Littlewood functions, Macdonald polynomials and the ribbon functions. Using work of Kashiwara, Miwa, Petersen and Yung, I define generalised ribbon functions for certain affine root systems 1 of classical type. I prove a theorem relating these generalised ribbon functions to a speculative global basis of level 1 q-deformed Fock spaces.
by Thomas F. Lam.
Ph.D.
Fiz, Pontiveros Gonzalo. "Topics in additive combinatorics". Thesis, University of Cambridge, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.608001.
Pełny tekst źródłaVolec, Jan. "Analytic methods in combinatorics". Thesis, University of Warwick, 2014. http://wrap.warwick.ac.uk/71063/.
Pełny tekst źródłaManners, Frederick. "Topics in additive combinatorics". Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:96cd6439-ab33-41b5-be55-0aa5e8aad105.
Pełny tekst źródłaCarroll, Christina C. "Enumerative combinatorics of posets". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/22659.
Pełny tekst źródłaCommittee Chair: Tetali, Prasad; Committee Member: Duke, Richard; Committee Member: Heitsch, Christine; Committee Member: Randall, Dana; Committee Member: Trotter, William T.
Johnson, Darin. "Topics in probabilistic combinatorics /". Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1879010731&sid=18&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Pełny tekst źródła"Department of Mathematics." Keywords: Kneser graphs, Probabilistic method, Random graphs, Rook numbers, Probabilistic combinatorics. Includes bibliographical references (p. 57-60). Also available online.
Johnson, Darin Bryant. "Topics In Probabilistic Combinatorics". OpenSIUC, 2009. https://opensiuc.lib.siu.edu/dissertations/63.
Pełny tekst źródłaKim, Paul. "Rationalization of Combinatorial Design in Architecture for Microhousing". University of Cincinnati / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1491316065691636.
Pełny tekst źródłaCarlier, Louis. "Objective combinatorics through decomposition spaces". Doctoral thesis, Universitat Autònoma de Barcelona, 2019. http://hdl.handle.net/10803/667374.
Pełny tekst źródłaThis thesis provides general constructions in the context of decomposition spaces, generalising classical results from combinatorics to the homotopical setting. This requires developing general tools in the theory of decomposition spaces and new viewpoints, which are of general interest, independently of the applications to combinatorics. In the first chapter, we summarise the homotopy theory and combinatorics of the 2-category of groupoids. We continue with a review of needed notions from the theory of ∞-categories. We then summarise the theory of decomposition spaces. In the second chapter, we identify the structures that have incidence bi(co)modules: they are certain augmented double Segal spaces subject to some exactness conditions. We establish a Möbius inversion principle for (co)modules, and a Rota formula for certain more involved structures called Möbius bicomodule configurations. The most important instance of the latter notion arises as mapping cylinders of infinity adjunctions, or more generally of adjunctions between Möbius decomposition spaces, in the spirit of Rota’s original formula. In the third chapter, we present some tools for providing situations where the generalised Rota formula applies. As an example of this, we compute the Möbius function of the decomposition space of finite posets, and exploit this to derive also a formula for the incidence algebra of any directed restriction species, free operad, or more generally free monad on a finitary polynomial monad. In the fourth chapter, we show that Schmitt's hereditary species induce monoidal decomposition spaces, and exhibit Schmitt's bialgebra construction as an instance of the general bialgebra construction on a monoidal decomposition space. We show furthermore that this bialgebra structure coacts on the underlying restriction-species bialgebra structure so as to form a comodule bialgebra. Finally, we show that hereditary species induce a new family of examples of operadic categories in the sense of Batanin and Markl. In the fifth chapter, representing joint work with Joachim Kock, we introduce a notion of antipode for monoidal (complete) decomposition spaces, inducing a notion of weak antipode for their incidence bialgebras. In the connected case, this recovers the usual notion of antipode in Hopf algebras. In the non-connected case it expresses an inversion principle of more limited scope, but still sufficient to compute the Möbius function as μ = ζ ◦ S, just as in Hopf algebras. At the level of decomposition spaces, the weak antipode takes the form of a formal difference of linear endofunctors S_even - S_odd, and it is a refinement of the general Möbius inversion construction of Gálvez--Kock--Tonks, but exploiting the monoidal structure.
Larsson, David. "Combinatorics on Brauer-type semigroups". Thesis, Uppsala University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-121366.
Pełny tekst źródłaHilton, Jacob Haim. "Combinatorics of countable ordinal topologies". Thesis, University of Leeds, 2016. http://etheses.whiterose.ac.uk/13608/.
Pełny tekst źródłaFiorini, Samuel. "Polyhedral combinatorics of order polytopes". Doctoral thesis, Universite Libre de Bruxelles, 2001. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/211629.
Pełny tekst źródłaGarner, David P. R. "Combinatorics and gauge-string duality". Thesis, Queen Mary, University of London, 2015. http://qmro.qmul.ac.uk/xmlui/handle/123456789/8939.
Pełny tekst źródłaTenner, Bridget Eileen. "The combinatorics of reduced decompositions". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/34617.
Pełny tekst źródłaIncludes bibliographical references (p. 85-88) and index.
This thesis examines several aspects of reduced decompositions in finite Coxeter groups. Effort is primarily concentrated on the symmetric group, although some discussions are subsequently expanded to finite Coxeter groups of types B and D. In the symmetric group, the combined frameworks of permutation patterns and reduced decompositions are used to prove a new characterization of vexillary permutations. This characterization and the methods used yield a variety of new results about the structure of several objects relating to a permutation. These include its commutation classes, the corresponding graph of the classes, the zonotopal tilings of a particular polygon, and a poset defined in terms of these tilings. The class of freely braided permutations behaves particularly well, and its graphs and posets are explicitly determined. The Bruhat order for the symmetric group is examined, and the permutations with boolean principal order ideals are completely characterized. These form an order ideal which is a simplicial poset, and its rank generating function is computed. Moreover, it is determined when the set of permutations avoiding a particular set of patterns is an order ideal, and the rank generating functions of these ideals are computed.
(cont.) The structure of the intervals and order ideals in this poset is elucidated via patterns, including progress towards understanding the relationship between pattern containment and subintervals in principal order ideals. The final discussions of the thesis are on reduced decompositions in the finite Coxeter groups of types B and D. Reduced decompositions of the longest element in the hyperoctahedral group are studied, and expected values are calculated, expanding on previous work for the symmetric group. These expected values give a quantitative interpretation of the effects of the Coxeter relations on reduced decompositions of the longest element in this group. Finally, the Bruhat order in types B and D is studied, and the elements in these groups with boolean principal order ideals are characterized and enumerated by length.
by Bridget Eileen Tenner.
Ph.D.
Sam, Steven V. "Free resolutions, combinatorics, and geometry". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/73178.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 71-72).
Boij-Söderberg theory is the study of two cones: the first is the cone of graded Betti tables over a polynomial ring, and the second is the cone of cohomology tables of coherent sheaves over projective space. Each cone has a triangulation induced from a certain partial order. Our first result gives a module-theoretic interpretation of this poset structure. The study of the cone of cohomology tables over an arbitrary polarized projective variety is closely related to the existence of an Ulrich sheaf, and our second result shows that such sheaves exist on the class of Schubert degeneracy loci. Finally, we consider the problem of classifying the possible ranks of Betti numbers for modules over a regular local ring.
by Steven V Sam.
Ph.D.
Ziegler, Günter M. (Günter Matthias). "Algebraic combinatorics of hyperplane arrangements". Thesis, Massachusetts Institute of Technology, 1987. http://hdl.handle.net/1721.1/14854.
Pełny tekst źródłaJeffers, Jason Adam. "Combinatorics and seifert knot invariants". Thesis, University of Cambridge, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.620418.
Pełny tekst źródłaBaber, R. "Some results in extremal combinatorics". Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1306175/.
Pełny tekst źródłaBloom, Thomas F. "Quantitative results in arithmetic combinatorics". Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.678687.
Pełny tekst źródłaJenssen, Matthew. "Continuous optimisation in extremal combinatorics". Thesis, London School of Economics and Political Science (University of London), 2017. http://etheses.lse.ac.uk/3572/.
Pełny tekst źródłaDavid, Stefan. "Extremal combinatorics and universal algorithms". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/278254.
Pełny tekst źródłaWoodcock, David J. "Schur algebras, combinatorics, and cohomology". Thesis, University of Warwick, 1991. http://wrap.warwick.ac.uk/108093/.
Pełny tekst źródłaNemati, Navid. "Syzygies : algebra, combinatorics and geometry". Thesis, Sorbonne université, 2019. http://www.theses.fr/2019SORUS284.
Pełny tekst źródłaCastelnuovo-Mumford regularity is one of the main numerical invariants that measure the complexity of the structure of homogeneous finitely generated modules over polynomial rings. It measures the maximum degrees of generators of the syzygies. In this thesis we study the Castelnuovo-Mumford regularity with different points of view and, in some parts, we mainly focus on linear syzygies. In Chapter 2 we study the regularity of Koszul homologies and Koszul cycles of one dimensional quotients. In Chapter 3 we study the weak and strong Lefschetz properties of a class of artinain monomial ideals. We show how the structure of the minimal free resolution could force weak or strong Lefschetz properties. In Chapter 4 and 5we study two different asymptotic behavior of Castelnuovo-Mumford regularity. In Chapter 4 we work on a quotient of a standard graded Noetherian algebra by homogeneous regular sequence. It is a celebrated result that the regularity of powers of an ideal in a polynomial ring becomes a linear function. In Chapter 5, we study the regularity of powers of dumbbell graphs. In Chapter 6, we work on product of projective spaces. In the begining of this chapter, we present a package for the computer software Macaulay2. Furthermore, we study the cohomologies of the “complete intersections'' in Pn x Pm
Ahmed, Maya. "Algebraic combinatorics of magic squares /". For electronic version search Digital dissertations database. Restricted to UC campuses. Access is free to UC campus dissertations, 2004. http://uclibs.org/PID/11984.
Pełny tekst źródłaSaigo, Hayato. "From Combinatorics to Noncommutative Probability". 京都大学 (Kyoto University), 2011. http://hdl.handle.net/2433/142351.
Pełny tekst źródłaHan, Bin. "Gamma positivity in enumerative combinatorics". Thesis, Lyon, 2019. http://www.theses.fr/2019LYSE1115/document.
Pełny tekst źródłaThe gamma positivity of a combinatorial sequence unifies both unimodality and symmetry. Finding new family of objets whose enumerative sequences have gamma positivity is a challenge and important topic in recent years. it has received considerable attention in recent times because of Gal’s conjecture, which asserts that the gamma-vector has nonnegative entries for any flag simple polytope. Often times, the h-polynomial for simplicial polytopes of combinatorial signification can be given as a generating function over a related set of combinatorial objects with respect to some statistic like the descent numbers, whose enumerative polynomials on permutations are Eulerian polynomials.This work deals with the gamma properties of several enumerative polynomials of permutation such as Eulerian polynomials and Narayana polynomials. This thesis contains five chapters
Brignall, Robert. "Simplicity in relational structures and its application to permutation classes". Thesis, St Andrews, 2007. http://hdl.handle.net/10023/431.
Pełny tekst źródłaSpiegel, Christoph. "Additive structures and randomness in combinatorics". Doctoral thesis, Universitat Politècnica de Catalunya, 2020. http://hdl.handle.net/10803/669327.
Pełny tekst źródłaLa combinatòria aritmètica, la teoria combinatòria dels nombres, la teoria additiva estructural i la teoria additiva de nombres són alguns dels termes que es fan servir per descriure una branca extensa i activa que es troba en la intersecció de la teoria de nombres i de la combinatòria, i que serà el motiu d'aquesta tesi doctoral. La primera part tracta la qüestió de sota quines circumstàncies es solen produir solucions a sistemes lineals d’equacions arbitràries en estructures additives. Una primera pregunta que s'estudia es refereix al punt en que conjunts d’una mida determinada contindran normalment una solució. Establirem un llindar i estudiarem també la distribució del nombre de solucions en aquest llindar, tot demostrant que en certs casos aquesta distribució convergeix a una distribució de Poisson. El següent tema de la tesis es relaciona amb el teorema de Van der Waerden, que afirma que cada coloració finita dels nombres enters conté una progressió aritmètica monocromàtica de longitud arbitrària. Aquest es considera el primer resultat en la teoria de Ramsey. Rado va generalitzar el resultat de van der Waerden tot caracteritzant en aquells sistemes lineals les solucions de les quals satisfan una propietat similar i Szemerédi la va reforçar amb una versió de densitat del resultat. Centrarem la nostra atenció cap a versions del teorema de Rado i Szemerédi en conjunts aleatoris, ampliant els treballs anteriors de Friedgut, Rödl, Rucinski i Schacht i de Conlon, Gowers i Schacht. Per últim, Chvátal i Erdos van suggerir estudiar estudiar jocs posicionals del tipus Maker-Breaker. Aquests jocs tenen una connexió profunda amb la teoria de les estructures aleatòries i ens basarem en el treball de Bednarska i Luczak per establir el llindar de la quantitat que necessitem per analitzar una gran varietat de jocs en favor del segon jugador. S'inclouen jocs en què el primer jugador vol ocupar una solució d'un sistema lineal d'equacions donat, generalitzant els jocs de van der Waerden introduïts per Beck. La segona part de la tesis tracta sobre el comportament extrem dels conjunts amb propietats additives interessants. Primer, considerarem els conjunts de Sidon, és a dir, conjunts d’enters amb diferències úniques quan es consideren parelles d'elements. Estudiarem una generalització dels conjunts de Sidons proposats recentment per Kohayakawa, Lee, Moreira i Rödl, en que les diferències entre parelles no són només diferents, sinó que, en realitat, estan allunyades una certa proporció en relació a l'element més gran. Obtindrem límits més baixos per a conjunts infinits que els obtinguts pels anteriors autors tot usant una construcció de conjunts de Sidon infinits deguda a Cilleruelo. Com a conseqüència d'aquests límits, obtindrem també el millor límit inferior actual per als conjunts de Sidon en conjunts infinits generats aleatòriament de nombres enters d'alta densitat. A continuació, un dels resultats centrals a la intersecció de la combinatòria i la teoria dels nombres és el teorema de Freiman-Ruzsa, que afirma que el conjunt suma d'un conjunt finit d’enters donats pot ser cobert de manera eficient per una progressió aritmètica generalitzada. En el cas de que el conjunt suma sigui de mida petita, existeixen descripcions estructurals més precises. Primer estudiarem els resultats que van més enllà del conegut teorema de Freiman 3k-4 en els enters. Llavors veurem una aplicació d’aquests resultats a conjunts de dobles petits en grups cíclics finits. Finalment, dirigirem l’atenció cap a conjunts amb funcions de representació gairebé constants. Erdos i Fuchs van establir que les funcions de representació de conjunts arbitraris d’enters no poden estar massa a prop de ser constants. Primer estendrem el resultat d’Erdos i Fuchs a funcions de representació ordenades. A continuació, abordarem una pregunta relacionada de Sárközy i Sós sobre funció de representació ponderada.
Eriksen, Niklas. "Combinatorics of genome rearrangements and phylogeny". Licentiate thesis, KTH, Mathematics, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1499.
Pełny tekst źródłaThis thesis deals with combinatorial problems taken frombioinformatics. In particular, we study the problem ofinferring distances between bacterial species by looking attheir respective gene orders. We regard one of the gene ordersas a permutation of the other. Given a set of valid operations,we seek the most parsimonious way to sort this permutation. Wealso look at the more complex problem of combining a set ofspecies into a phylogenetic tree, which shows the relationshipsbetween all species.The computer program Derange II by Blanchette andSanko® uses a greedy algorithm to estimate theevolutionary distance between two species. The success dependson a set of weights, which may be specified by the user. Wehave examined which weights are optimal, and also the qualityof this program using optimal weights.Derange II has been extended to solve the medianproblem, that is finding the permutation that is closest tothree other permutations. We then use this new version to buildphylogenetic trees directly from gene order permutations. Insome situations, this new method works much better thanprevious methods.There is an analytical expression for the evolutionarydistance between two species if the set of allowed operationsincludes only inversions (reversing a segment of genes).Allowing transpositions (swapping two adjacent segments) aswell, we have found a (1+")-approximation for this distance,where we have weighted the di®erent operations accordingto our results on the Derange II weights.
Modan, Laurentiu. "TO TEACH COMBINATORICS, USING SELECTED PROBLEMS". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-80681.
Pełny tekst źródłaSjöstrand, Jonas. "Enumerative combinatorics related to partition shapes". Doctoral thesis, KTH, Matematik (Inst.), 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4298.
Pełny tekst źródłaÄmnet för denna avhandling är enumerativ kombinatorik tillämpad på tre olika objekt med anknytning till partitionsformer, nämligen tablåer, begränsade ord och bruhatintervall. Dom viktigaste vetenskapliga bidragen är följande. Artikel I: Låt tecknet av en standardtablå vara tecknet hos permutationen man får om man läser tablån rad för rad från vänster till höger, som en bok. En förmodan av Richard Stanley säjer att teckensumman av alla standardtablåer med n rutor är 2^[n/2]. Vi visar en generalisering av denna förmodan med hjälp av Robinson-Schensted-korrespondensen och ett nytt begrepp som vi kallar schacktablåer. Beviset bygger på ett anmärkningsvärt enkelt samband mellan tecknet hos en permutation pi och tecknen hos dess RS-motsvarande tablåer P och Q, nämligen sgn(pi)=(-1)^v sgn(P)sgn(Q), där v är antalet disjunkta vertikala dominobrickor som får plats i partitionsformen hos P och Q. Teckenobalansen hos en partitionsform definieras som teckensumman av alla standardtablåer av den formen. Som en ytterligare tillämpning av formeln för teckenöverföring ovan bevisar vi också en starkare variant av en annan förmodan av Stanley som handlar om viktade summor av kvadrerade teckenobalanser. Artikel II: Vi generaliserar några av resultaten i artikel I till skeva tablåer. Närmare bestämt undersöker vi hur teckenegenskapen överförs av Sagan och Stanleys skeva Robinson-Schensted-korrespondens. Resultatet är en förvånansvärt enkel generalisering av den vanliga ickeskeva formeln ovan. Som en tillämpning visar vi att vissa viktade summor av kvadrerade teckenobalanser blir noll, vilket leder till en generalisering av en variant av Stanleys andra förmodan. Artikel III: Följande specialfall av en förmodan av Loehr och Warrington bevisades av Ekhad, Vatter och Zeilberger: Det finns 10^n ord med summan noll av längd 5n i alfabetet {+3,-2} sådana att inget sammanhängande delord börjar med +3, slutar med -2 och har summan -2. Vi ger ett enkelt bevis för denna förmodan i dess ursprungliga allmännare utförande där 3 och 2 byts ut mot vilka som helst relativt prima positiva heltal a och b, 10^n byts ut mot ((a+b) över a)^n och 5n mot (a+b)n. För att göra detta formulerar vi problemet i termer av cylindriska latticestigar som kan tolkas som den sydöstra gränslinjen för vissa partitionsformer. Artikel IV: Vi karakteriserar dom permutationer pi sådana att elementen i det slutna bruhatintervallet [id,pi] i symmetriska gruppen motsvarar ickeslående tornplaceringar på ett skevt ferrersbräde. Dessa intervall visar sej vara precis dom vars flaggmångfalder är definierade av inklusioner, ett begrepp introducerat av Gasharov och Reiner. Karakteriseringen skapar en länk mellan poincarépolynom (ranggenererande funktioner) för bruhatintervall och q-tornpolynom, och vi kan beräkna poincarépolynomet för några särskilt intressanta intervall i dom ändliga weylgrupperna A_n och B_n. Uttrycken innehåller q-stirlingtal av andra sorten, och sätter man q=1 för grupp A_n så får man Kanekos poly-bernoullital.
QC 20100818
Samieinia, Shiva. "Digital Geometry, Combinatorics, and Discrete Optimization". Doctoral thesis, Stockholms universitet, Matematiska institutionen, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-47399.
Pełny tekst źródłaAt the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 4: Submitted. Paper 5: Manuscript. Paper 6: Manuscript.
Saevarsson, Freyr. "Combinatorics in Pattern-Based Graphical Passwords". Thesis, KTH, Matematik (Inst.), 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-102004.
Pełny tekst źródłaTateno, Atsushi. "Problems in finite and infinite combinatorics". Thesis, University of Oxford, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.504612.
Pełny tekst źródłaBandlow, Jason. "Combinatorics of Macdonald polynomials and extensions". Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2007. http://wwwlib.umi.com/cr/ucsd/fullcit?p3259066.
Pełny tekst źródłaTitle from first page of PDF file (viewed Juen 21, 2007). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 70-71).