Gotowa bibliografia na temat „Coli Genome”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Coli Genome”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Coli Genome"
KRÖGER, MANFRED. "E. coli genome". Nature 339, nr 6223 (czerwiec 1989): 330. http://dx.doi.org/10.1038/339330b0.
Pełny tekst źródłaDixit, Purushottam D., Tin Yau Pang, F. William Studier i Sergei Maslov. "Recombinant transfer in the basic genome ofEscherichia coli". Proceedings of the National Academy of Sciences 112, nr 29 (7.07.2015): 9070–75. http://dx.doi.org/10.1073/pnas.1510839112.
Pełny tekst źródłaCochrane, Ryan R., Stephanie L. Brumwell, Arina Shrestha, Daniel J. Giguere, Samir Hamadache, Gregory B. Gloor, David R. Edgell i Bogumil J. Karas. "Cloning of Thalassiosira pseudonana’s Mitochondrial Genome in Saccharomyces cerevisiae and Escherichia coli". Biology 9, nr 11 (26.10.2020): 358. http://dx.doi.org/10.3390/biology9110358.
Pełny tekst źródłaZhang, Hui, Yao Xiong, Wenhai Xiao i Yi Wu. "Investigation of Genome Biology by Synthetic Genome Engineering". Bioengineering 10, nr 2 (20.02.2023): 271. http://dx.doi.org/10.3390/bioengineering10020271.
Pełny tekst źródłaDobrindt, Ulrich, Franziska Agerer, Kai Michaelis, Andreas Janka, Carmen Buchrieser, Martin Samuelson, Catharina Svanborg, Gerhard Gottschalk, Helge Karch i Jörg Hacker. "Analysis of Genome Plasticity in Pathogenic and Commensal Escherichia coli Isolates by Use of DNA Arrays". Journal of Bacteriology 185, nr 6 (15.03.2003): 1831–40. http://dx.doi.org/10.1128/jb.185.6.1831-1840.2003.
Pełny tekst źródłaMori, Hideo, Hiroshi Mizoguchi i Tatsuro Fujio. "Escherichia coli minimum genome factory". Biotechnology and Applied Biochemistry 46, nr 3 (1.03.2007): 157. http://dx.doi.org/10.1042/ba20060107.
Pełny tekst źródłaHayashi, Tetsuya. "Genome plasticity of Escherichia coli; insights from genome analysis". Environmental Mutagen Research 27, nr 2 (2005): 117–18. http://dx.doi.org/10.3123/jems.27.117.
Pełny tekst źródłaCui, Tailin, Naoki Moro‐oka, Katsufumi Ohsumi, Kenichi Kodama, Taku Ohshima, Naotake Ogasawara, Hirotada Mori, Barry Wanner, Hironori Niki i Takashi Horiuchi. "Escherichia coli with a linear genome". EMBO reports 8, nr 2 (12.01.2007): 181–87. http://dx.doi.org/10.1038/sj.embor.7400880.
Pełny tekst źródłaKolisnychenko, V. "Engineering a Reduced Escherichia coli Genome". Genome Research 12, nr 4 (1.04.2002): 640–47. http://dx.doi.org/10.1101/gr.217202.
Pełny tekst źródłaKOOB, MICHAEL D., ANITA J. SHAW i DOUGLAS C. CAMERON. "Minimizing the Genome of Escherichia coli". Annals of the New York Academy of Sciences 745, nr 1 (17.12.2006): 1–3. http://dx.doi.org/10.1111/j.1749-6632.1994.tb44359.x.
Pełny tekst źródłaRozprawy doktorskie na temat "Coli Genome"
Patel, Muneeza S. "Algorithms for E. coli genome engineering". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/106461.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
"June 2016." Page 90 blank. Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 70-72).
Author summary: Lamba red recombineering is one of methods of performing genome engineering. However, this method of genome editing is not very specific and efficient and is highly dependent on the genomic regions that are targeted (integration sites). In this project we explored ways of identifying what makes a site well suited for lambda red genome engineering. We wanted to explore whether we can eventually predict the "goodness" of an integration site using an algorithm. Our initial approach to the problem was to write an algorithm based on some characteristics that we felt would be key to determining the goodness of a site. Choosing to initially focus on specificity of the integrations, we used experimental approaches to evaluate whether our algorithm had any predictive powers for specificity. Upon failing, we revised our plan to generate a dataset of ~150 sites and their integration data (whether integration was successful, specific and efficient at that site). We used this dataset to explore correlations between the specificity data and characteristics we thought might affect the specificity of sites. The most promising characteristics appeared to be the uniqueness of the genomic site (as determined by BLAST) and the existence of Repetitive Extragenic Palindrome (REP) sites at the site of integration. Section I of this thesis sets up the problem, section II talks about the initial approach we took to the problem and section III discusses our modified approach -- which formed the bulk of this thesis project. Section I and III are the most relevant to understand the project, while Section II gives more content to the project in addition to detailed insight to what approaches did not work.
by Muneeza S. Patel.
M. Eng. in Computer Science & Molecular Biology
Neelakanta, Girish. "Genome variations in commensal and pathogenic E.coli". [S.l. : s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974330329.
Pełny tekst źródłaSchlegel, Susan. "From protein production to genome evolution in Escherichia coli". Doctoral thesis, Stockholms universitet, Institutionen för biokemi och biofysik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-94993.
Pełny tekst źródłaAt the time of the doctoral defense, the following paper was unpublished and had a status as follows: Paper 3: Manuscript.
Wlodarski, Michal. "Dynamics of E. coli genome and cytosol under antibiotics". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275205.
Pełny tekst źródłaRomero, Alvarez David. "Genome wide analyses of the Escherichia coli primary and secondary transcriptomes". Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6917/.
Pełny tekst źródłaCoss, Dennis. "Insertion of genes and operons into the Escherichia coli genome through targeted recombination". Morgantown, W. Va. : [West Virginia University Libraries], 2005. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=3804.
Pełny tekst źródłaTitle from document title page. Document formatted into pages; contains v, 125 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 71-87).
Mosberg, Joshua Adam Weintrob. "Studying and Improving Lambda Red Recombination for Genome Engineering in Escherichia coli". Thesis, Harvard University, 2013. http://dissertations.umi.com/gsas.harvard:10777.
Pełny tekst źródłaEl, Sayyed Hafez. "Mapping Topoisomerase IV Binding and Activity Sites on the E. coli genome". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS362/document.
Pełny tekst źródłaCatenation links between sister chromatids are formed progressively during DNA replication and are involved in the establishment of sister chromatid cohesion. Topo IV is a bacterial type II topoisomerase involved in the removal of catenation links both behind replication forks and after replication during the final separation of sister chromosomes. We have investigated the global DNA-binding and catalytic activity of Topo IV in E. coli using genomic and molecular biology approaches. ChIP-seq revealed that Topo IV interaction with the E. coli chromosome is controlled by DNA replication. During replication, Topo IV has access to most of the genome but only selects a few hundred specific sites for its activity. Local chromatin and gene expression context influence site selection. Moreover strong DNA-binding and catalytic activities are found at the chromosome dimer resolution site, dif, located opposite the origin of replication. We reveal a physical and functional interaction between Topo IV and the XerCD recombinases acting at the dif site. This interaction is modulated by MatP, a protein involved in the organization of the Ter macrodomain. These results show that Topo IV, XerCD/dif and MatP are part of a network dedicated to the final step of chromosome management during the cell cycle
Johnson, Matthew David. "Understanding the regulation of acid resistance in E. coli using whole genome techniques". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/3006/.
Pełny tekst źródłaSchmidt, Dorothea. "Molekulare Analyse des probiotischen Stamms Escherichia coli Nissle 1917". Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1243973355362-88295.
Pełny tekst źródłaThe probiotic E. coli Nissle 1917 is a fecal isolate which is traditionally used for treatment of various gastrointestinal disorders. In clinical trials where EcN was used as therapeutic alternative for remission maintenance of ulcerative colitis compared to standard medication, promising results led to an increased interest in probiotics. Today, EcN is one of the best studied probiotics. Therefore, several mechanisms of action could be enlightened. Structural components and strain-specific products are responsible for its probiotic effects. But conclusive concepts about genes, gene products and molecular mechanisms that really contribute to the probiotic character of EcN have not been offered so far. In order to create new possibilities to elucidate the probiotic traits of EcN the genome is analysed by taking this as a basis for comparison to other E. coli genomes and identification of intestinal in vivo regulated genes using a promoter-trap-library. The sequenced EcN genome is annotated and compared to 13 other so far annotated E. coli genomes. Concerning these analyses EcN encodes 121 strain-specific genes. The genome structure including the genomic islands and prophages is highly homolog to the uropathogenic E. coli CFT073. EcN encodes most of the virulence and fitness factors that are present in E. coli CFT073. Therefore, the close relationship of these two strains is confirmed at nucleotide level. Furthermore, it is shown that in artificial systems like cell culture assays and gnotobiotic mice EcN reveals a pathogenic potential although EcN is able to decrease colonization efficiency of pathogenic bacteria. The alternative sigma factor RpoS that is responsible for global regulation and activity of several genes seems to play an important role during colonization of EcN in the intestine and its immunostimulatory effects on intestinal epithelial cells. Investigation of EcN-deletion mutants lacking genomic islands and prophages lead to the conclusion that some genomic islands may play a role for specific probiotic traits. This is the first time where a promoter-trap-library was used in conventional and gnotobiotic mice for collection of intestinal in vivo active promoters. Constructing and establishing a promoter-reporter gene assay with the bioluminescent luxCDABE operon made the investigation of selected promoters in vitro possible as well as establishing a bioluminescence assay using an In Vivo Imaging System (IVIS) for investigation of promoter activity in living mice. In this research project was shown that EcN is not a completely harmless probiotic. The genome structure and regulatory mechanisms of gene expression are the strain’s molecular traits that lead to probiotic activity and immunostimulatory effects. Therefore, the molecular analyses presented here, together with the complete genome sequence, are a basis for further investigations of mechanisms that are responsible for the probiotic effects of EcN
Książki na temat "Coli Genome"
Richardson, Deborah Y. Plant genome: Breeding for cold tolerance in plants : January 1987 - April 1992. Beltsville, Md: National Agricultural Library, 1992.
Znajdź pełny tekst źródłaVaillancourt, Peter E. E. coli gene expression protocols. Totowa, N.J: Humana, 2011.
Znajdź pełny tekst źródłaDe-Coll', Pier Tancredi. Pier Tancredi De-Coll'. Pistoia: Gli ori, 2018.
Znajdź pełny tekst źródłaDe-Coll', Pier Tancredi. Pier Tancredi De-Coll': Lessico quotidiano. Pistoia: Gli Ori, 2019.
Znajdź pełny tekst źródłaHeterologous gene expression in E. coli: Methods and protocols. New York, NY: Humana Press, 2011.
Znajdź pełny tekst źródłaMagnusson, Lisa. Global regulation of gene expression in Escherichia coli: The role of ppGpp, DksA, and the levels of RNA polymerase. Göteborg: Göteborgs universitet, 2007.
Znajdź pełny tekst źródłaMagnusson, Lisa. Global regulation of gene expression in Escherichia coli: The role of ppGpp, DksA, and the levels of RNA polymerase. Göteborg: Göteborgs universitet, 2007.
Znajdź pełny tekst źródłaLife on Ice: A History of New Uses for Cold Blood. Chicago: University of Chicago Press, 2017.
Znajdź pełny tekst źródłaP, Smith C., Rench Jonny i Brosseau Pat, red. The programme. La Jolla, CA: Wildstorm, 2008.
Znajdź pełny tekst źródłaCold Spring Harbor Meeting on Cancer Cells (3rd 1985). Abstracts of papers presented at the third Cold Spring Harbor Meeting on Cancer Cells: DNA tumor viruses : control of gene expression and replication, September 4-September 8, 1985. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory, 1985.
Znajdź pełny tekst źródłaCzęści książek na temat "Coli Genome"
Milkman, Roger. "Gene Transfer in Escherichia coli". W Organization of the Prokaryotic Genome, 291–309. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch16.
Pełny tekst źródłaBergthorsson, Ulfar, i Howard Ochman. "Evolution of the E. coli Genome". W Bacterial Genomes, 177–86. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-6369-3_17.
Pełny tekst źródłaJensen, Sheila Ingemann, i Alex Toftgaard Nielsen. "Multiplex Genome Editing in Escherichia coli". W Methods in Molecular Biology, 119–29. New York, NY: Springer New York, 2018. http://dx.doi.org/10.1007/978-1-4939-7295-1_8.
Pełny tekst źródłaWeinstock, George M. "Resources for the Escherichia coli Genome Project". W Bacterial Genomes, 489–97. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-6369-3_38.
Pełny tekst źródłaFehér, Tamás, Ildikó Karcagi, Zsuzsa Győrfy, Kinga Umenhoffer, Bálint Csörgő i György Pósfai. "Scarless Engineering of the Escherichia coli Genome". W Microbial Gene Essentiality: Protocols and Bioinformatics, 251–59. Totowa, NJ: Humana Press, 2008. http://dx.doi.org/10.1007/978-1-59745-321-9_16.
Pełny tekst źródłaMellmann, Alexander, Martina Bielaszewska i Helge Karch. "Genotypic Changes in Enterohemorrhagic Escherichia coli During Human Infection". W Genome Plasticity and Infectious Diseases, 16–26. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555817213.ch2.
Pełny tekst źródłaHall, Barry G. "Transposable elements as activators of cryptic genes in E. coli". W Transposable Elements and Genome Evolution, 181–87. Dordrecht: Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4156-7_20.
Pełny tekst źródłaLabedan, Bernard, i Monica Riley. "Genetic Inventory: Escherichia coli as a Window on Ancestral Proteins". W Organization of the Prokaryotic Genome, 311–29. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch17.
Pełny tekst źródłaNouwens, Amanda S., Femia G. Hopwood, Mathew Traini, Keith L. Williams i Bradley J. Walsh. "Proteome Approach to the Identification of Cellular Escherichia coli Proteins". W Organization of the Prokaryotic Genome, 331–46. Washington, DC, USA: ASM Press, 2014. http://dx.doi.org/10.1128/9781555818180.ch18.
Pełny tekst źródłaAnazawa, Hideharu. "The Concept of the Escherichia coli Minimum Genome Factory". W Microbial Production, 25–32. Tokyo: Springer Japan, 2014. http://dx.doi.org/10.1007/978-4-431-54607-8_3.
Pełny tekst źródłaStreszczenia konferencji na temat "Coli Genome"
Huang, Yi. "Codon Effect on the Entire Genome Based upon Genome-Wide Recoded Escherichia coli". W 2021 IEEE 9th International Conference on Bioinformatics and Computational Biology (ICBCB). IEEE, 2021. http://dx.doi.org/10.1109/icbcb52223.2021.9459235.
Pełny tekst źródłaKurmi, Annushree, Debashis Das, Piyali Sen, Suvendra Kumar Ray i Siddhartha Sankar Satapathy. "Gene Essentiality Mediated Base Substitution in Escherichia coli genome: Machine Learning Analysis". W 2022 International Interdisciplinary Conference on Mathematics, Engineering and Science (MESIICON). IEEE, 2022. http://dx.doi.org/10.1109/mesiicon55227.2022.10093501.
Pełny tekst źródła"Impact of negative feedbacks on de novo pyrimidines biosynthesis in E. coli". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-115.
Pełny tekst źródłaMeizhen Ji, Jun Lu, Ying Zhang, Changjiang Ding, Dandan Qin i Haiyan Bai. "Operon prediction based on quadratic discriminant analysis in Escherichia coli genome". W 2010 2nd International Conference on Information Science and Engineering (ICISE). IEEE, 2010. http://dx.doi.org/10.1109/icise.2010.5689023.
Pełny tekst źródłaJia, Mengwen, i Yong Zhan. "Relationship of ORF length and mRNA degradation in Escherichia coli genome". W NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756461.
Pełny tekst źródłaVilkhovoy, M., N. Horvath i J. D. Varner. "Toward genome scale modeling of Escherichia coli cell-free protein synthesis". W IET/SynbiCITE Engineering Biology Conference. Institution of Engineering and Technology, 2016. http://dx.doi.org/10.1049/cp.2016.1253.
Pełny tekst źródła"Impact of terahertz irradiation on the antimicrobial resistance of Escherichia coli JM 103". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-316.
Pełny tekst źródłaWijeratne, Shalini. "A Comparative Analysis of Nanoluc Luciferase and Alkaline Phosphatase as Reporter Proteins for Phage-based Pathogen Detection". W 2022 AOCS Annual Meeting & Expo. American Oil Chemists' Society (AOCS), 2022. http://dx.doi.org/10.21748/iibu6123.
Pełny tekst źródła"On the question of activity of oxidative branch of pentose phosphate shunt in pgl mutant of Escherichia coli". W Bioinformatics of Genome Regulation and Structure/Systems Biology (BGRS/SB-2022) :. Institute of Cytology and Genetics, the Siberian Branch of the Russian Academy of Sciences, 2022. http://dx.doi.org/10.18699/sbb-2022-311.
Pełny tekst źródłaTeramoto, Jun, Kayoko Yamada, Naoki Kobayashi, Ayako Kori, Shige H. Yoshimura, Kunio Takeyasu i Akira Ishihama. "Anaerobiosis-induced novel nucleoid protein of Escherichia coli: Architectural role in genome DNA compaction". W 2009 International Symposium on Micro-NanoMechatronics and Human Science (MHS). IEEE, 2009. http://dx.doi.org/10.1109/mhs.2009.5351819.
Pełny tekst źródłaRaporty organizacyjne na temat "Coli Genome"
Shpigel, Nahum Y., Ynte Schukken i Ilan Rosenshine. Identification of genes involved in virulence of Escherichia coli mastitis by signature tagged mutagenesis. United States Department of Agriculture, styczeń 2014. http://dx.doi.org/10.32747/2014.7699853.bard.
Pełny tekst źródłaMcCarthy, Noel, Eileen Taylor, Martin Maiden, Alison Cody, Melissa Jansen van Rensburg, Margaret Varga, Sophie Hedges i in. Enhanced molecular-based (MLST/whole genome) surveillance and source attribution of Campylobacter infections in the UK. Food Standards Agency, lipiec 2021. http://dx.doi.org/10.46756/sci.fsa.ksj135.
Pełny tekst źródłaWillis, C., F. Jorgensen, S. A. Cawthraw, H. Aird, S. Lai, M. Chattaway, I. Lock, E. Quill i G. Raykova. A survey of Salmonella, Escherichia coli (E. coli) and antimicrobial resistance in frozen, part-cooked, breaded or battered poultry products on retail sale in the United Kingdom. Food Standards Agency, maj 2022. http://dx.doi.org/10.46756/sci.fsa.xvu389.
Pełny tekst źródłaJorgensen, Frieda, John Rodgers, Daisy Duncan, Joanna Lawes, Charles Byrne i Craig Swift. Levels and trends of antimicrobial resistance in Campylobacter spp. from chicken in the UK. Food Standards Agency, wrzesień 2022. http://dx.doi.org/10.46756/sci.fsa.dud728.
Pełny tekst źródłaWeil, Clifford F., Anne B. Britt i Avraham Levy. Nonhomologous DNA End-Joining in Plants: Genes and Mechanisms. United States Department of Agriculture, lipiec 2001. http://dx.doi.org/10.32747/2001.7585194.bard.
Pełny tekst źródłaJorgensen, Frieda, Andre Charlett, Craig Swift, Anais Painset i Nicolae Corcionivoschi. A survey of the levels of Campylobacter spp. contamination and prevalence of selected antimicrobial resistance determinants in fresh whole UK-produced chilled chickens at retail sale (non-major retailers). Food Standards Agency, czerwiec 2021. http://dx.doi.org/10.46756/sci.fsa.xls618.
Pełny tekst źródłaFridman, Eyal, i Eran Pichersky. Tomato Natural Insecticides: Elucidation of the Complex Pathway of Methylketone Biosynthesis. United States Department of Agriculture, grudzień 2009. http://dx.doi.org/10.32747/2009.7696543.bard.
Pełny tekst źródłaGafny, Ron, A. L. N. Rao i Edna Tanne. Etiology of the Rugose Wood Disease of Grapevine and Molecular Study of the Associated Trichoviruses. United States Department of Agriculture, wrzesień 2000. http://dx.doi.org/10.32747/2000.7575269.bard.
Pełny tekst źródłaBalfanz, Emma, Erin Sandford, Michael G. Kaiser i Susan J. Lamont. Differential Immunological Gene Expression after Escherichia coli Infection in Chickens. Ames (Iowa): Iowa State University, styczeń 2011. http://dx.doi.org/10.31274/ans_air-180814-668.
Pełny tekst źródłaGoodman, E. M., i B. Greenebaum. Weak Electromagnetic Field Effects on Gene Expression in E. coli. Fort Belvoir, VA: Defense Technical Information Center, marzec 1996. http://dx.doi.org/10.21236/ada306447.
Pełny tekst źródła