Artykuły w czasopismach na temat „Coiled tubes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Coiled tubes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Akgul, Dogan, Safak Metin Kirkar, Busra Selenay Onal, Ali Celen, Ahmet Selim Dalkilic i Somchai Wongwises. "Single-phase flow heat transfer characteristics in helically coiled tube heat exchangers". Kerntechnik 87, nr 1 (1.02.2022): 1–25. http://dx.doi.org/10.1515/kern-2021-1005.
Pełny tekst źródłaAbdul- Kareem R. Abed, Hassan Jawdat Fadhiel, Gaydaa Mahsun i Thabet C. Yassen. "Experimental Study on The Effect of Capillary Tube Geometry on The Performance of Vapour Compression Refrigeration System". Diyala Journal of Engineering Sciences 7, nr 2 (1.06.2014): 47–60. http://dx.doi.org/10.24237/djes.2014.07204.
Pełny tekst źródłaINOUE, NORIHIRO, SHINITSU IKU i KAZUHIDE WATANABE. "PRESSURE DROP AND HEAT TRANSFER INSIDE THE COILED FLOW CHANNEL OF SMOOTH TUBES AND INTERNALLY HELICAL-GROOVED TUBES". International Journal of Air-Conditioning and Refrigeration 20, nr 04 (grudzień 2012): 1250023. http://dx.doi.org/10.1142/s201013251250023x.
Pełny tekst źródłaDey, Anshumaan, i Monisha M. Mandal. "Hydrodynamics Study of Oil–Water Flow in Coiled Flow Inverter". Advanced Science, Engineering and Medicine 12, nr 2 (1.02.2020): 173–80. http://dx.doi.org/10.1166/asem.2020.2485.
Pełny tekst źródłaAkeedy, Adnan Rasheed, Hajar Alias i Sami D. Salman. "HEAT TRANSFER ENHANCEMENT USING PASSIVE TECHNIQUE: REVIEW". Jurnal Teknologi 83, nr 2 (28.02.2021): 151–62. http://dx.doi.org/10.11113/jurnalteknologi.v83.14546.
Pełny tekst źródłaGao, Weikai, Xiaoyang Xie, Xiaowei Li i Xinxin Wu. "Influence of Coiling Direction of Helical Tube Bundles on the Thermal-Hydraulics of the HTGR Steam Generator". Journal of Physics: Conference Series 2048, nr 1 (1.10.2021): 012032. http://dx.doi.org/10.1088/1742-6596/2048/1/012032.
Pełny tekst źródłaGarimella, S., D. E. Richards i R. N. Christensen. "Experimental Investigation of Heat Transfer in Coiled Annular Ducts". Journal of Heat Transfer 110, nr 2 (1.05.1988): 329–36. http://dx.doi.org/10.1115/1.3250488.
Pełny tekst źródłaHaryoko, Luthfi A. F., Jundika C. Kurnia i Agus P. Sasmito. "Numerical Investigation of Subcooled Boiling Heat Transfer in Helically-Coiled Tube". International Journal of Automotive and Mechanical Engineering 17, nr 1 (30.03.2020): 7675–86. http://dx.doi.org/10.15282/ijame.17.1.2020.15.0570.
Pełny tekst źródłaMishani, Siamak, Brian Evans, Vamegh Rasouli, Reem Roufail, Soren Soe i Peter Jaensch. "Interlaminar modelling to predict composite coiled tube failure". APPEA Journal 55, nr 1 (2015): 361. http://dx.doi.org/10.1071/aj14029.
Pełny tekst źródłaQuinlan, R. A., i M. Stewart. "Crystalline tubes of myosin subfragment-2 showing the coiled-coil and molecular interaction geometry." Journal of Cell Biology 105, nr 1 (1.07.1987): 403–15. http://dx.doi.org/10.1083/jcb.105.1.403.
Pełny tekst źródłaGordon, PA, JM Norton, JM Guerra i ST Perdue. "Positioning of chest tubes: effects on pressure and drainage". American Journal of Critical Care 6, nr 1 (1.01.1997): 33–38. http://dx.doi.org/10.4037/ajcc1997.6.1.33.
Pełny tekst źródłaGrabezhnaya, V., A. Mikheyev, A. Alekhin, A. Kryukov i A. Tikhomirov. "EXPERIMENTAL JUSTIFICATION OF DESIGN CHARACTERISTICS OF STEAM GENERATOR RP BREST-OD-300". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2021, nr 2 (26.06.2021): 218–35. http://dx.doi.org/10.55176/2414-1038-2021-2-218-235.
Pełny tekst źródłaHigueras-Ruiz, Diego R., Michael W. Shafer i Heidi P. Feigenbaum. "Cavatappi artificial muscles from drawing, twisting, and coiling polymer tubes". Science Robotics 6, nr 53 (21.04.2021): eabd5383. http://dx.doi.org/10.1126/scirobotics.abd5383.
Pełny tekst źródłaGrabezhnaya, V., i A. Mikheyev. "EXPERIMENTAL STUDY OF THERMAL HYDRAULICS ON THE MODEL OF HELICAL COILED STEAM GENERATOR HEATED BY LIQUID LEAD WITH LONGITUDINAL AND TRANSVERSE FLOW". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2019, nr 1 (26.03.2019): 132–51. http://dx.doi.org/10.55176/2414-1038-2019-1-132-151.
Pełny tekst źródłaRasti, Mehdi, i Ji Hwan Jeong. "Assessment of Dimensionless Correlations for Prediction of Refrigerant Mass Flow Rate Through Capillary Tubes — A Review". International Journal of Air-Conditioning and Refrigeration 25, nr 04 (grudzień 2017): 1730004. http://dx.doi.org/10.1142/s201013251730004x.
Pełny tekst źródłaVinn, Olev. "Tube ultrastructure of the fossil genus Rotularia Defrance, 1827 (Polychaeta, Serpulidae)". Journal of Paleontology 82, nr 1 (styczeń 2008): 206–12. http://dx.doi.org/10.1666/06-125.1.
Pełny tekst źródłaDjordjevic, Milan, Velimir Stefanovic, Dragan Kalaba, Marko Mancic i Marko Katinic. "Radiant absorption characteristics of corrugated curved tubes". Thermal Science 21, nr 6 Part B (2017): 2897–906. http://dx.doi.org/10.2298/tsci160420263d.
Pełny tekst źródłaLi, Zhaoxu, Shengyao Jiang, Xingtuan Yang, Yichuan Huang, Guangyu Zhu, Jiyuan Tu i Hongye Zhu. "Bubbly-intermittent flow transition in helically coiled tubes". Chemical Engineering Journal 323 (wrzesień 2017): 96–104. http://dx.doi.org/10.1016/j.cej.2017.04.029.
Pełny tekst źródłaPrabhanjan, Devanahalli G., Timothy J. Rennie i G. S. Vijaya Raghavan. "Natural convection heat transfer from helical coiled tubes". International Journal of Thermal Sciences 43, nr 4 (kwiecień 2004): 359–65. http://dx.doi.org/10.1016/j.ijthermalsci.2003.08.005.
Pełny tekst źródłaSharma, Loveleen, K. D. P. Nigam i Shantanu Roy. "Single phase mixing in coiled tubes and coiled flow inverters in different flow regimes". Chemical Engineering Science 160 (marzec 2017): 227–35. http://dx.doi.org/10.1016/j.ces.2016.11.034.
Pełny tekst źródłaBozzoli, Fabio, Luca Cattani, Sara Rainieri, Fermín S. V. Bazán i Leonardo S. Borges. "Estimation of the local heat transfer coefficient in coiled tubes". International Journal of Numerical Methods for Heat & Fluid Flow 27, nr 3 (6.03.2017): 575–86. http://dx.doi.org/10.1108/hff-03-2016-0097.
Pełny tekst źródłaElshamy, Samir M., Mohamed T. Abdelghany, M. R. Salem i O. E. Abdellatif. "Energy and Exergy Analysis of Shell and Coil Heat Exchanger Using Water Based Al2O3 Nanofluid Including Diverse Coil Geometries: An Experimental Study". Journal of Nanofluids 9, nr 1 (1.03.2020): 13–23. http://dx.doi.org/10.1166/jon.2020.1727.
Pełny tekst źródłaBlackbourn, H. D., i A. P. Jackson. "Plant clathrin heavy chain: sequence analysis and restricted localisation in growing pollen tubes". Journal of Cell Science 109, nr 4 (1.04.1996): 777–86. http://dx.doi.org/10.1242/jcs.109.4.777.
Pełny tekst źródłaHewitt, G. F., i S. Jayanti. "Prediction of film inversion in two-phase flow in coiled tubes". Journal of Fluid Mechanics 236 (marzec 1992): 497–511. http://dx.doi.org/10.1017/s0022112092001502.
Pełny tekst źródłaHe, Jinjing, Jingwen Gong, Qingqing Zheng i Jin Jiang. "Repositioning of the Severe Prolapsed Silicone Tubes after Bicanalicular Nasal Intubation: A Novel Technique". Journal of Ophthalmology 2021 (6.03.2021): 1–6. http://dx.doi.org/10.1155/2021/6669717.
Pełny tekst źródłaGrabezhnaya, V., A. Mikheyev i A. Kryukov. "ON THE EFFECT OF OXYGEN IMPURITIES ON HEAT TRANSFER AT TRANSVERSAL FLOW OF STEAM-GENERATING TUBES IN NORMAL HEAT TRANSFER MODES AND WITH LEAD FREEZE". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2020, nr 3 (26.09.2020): 135–47. http://dx.doi.org/10.55176/2414-1038-2020-3-135-147.
Pełny tekst źródłaJi, Cui Lian, Ji Tian Han, Chang Nian Chen, Xia Dong i Ling Jian Kong. "Influence of Geometry Parameters on Critical Heat Flux in Helically Coiled Tubes: Development of Correlation". Applied Mechanics and Materials 353-356 (sierpień 2013): 3077–80. http://dx.doi.org/10.4028/www.scientific.net/amm.353-356.3077.
Pełny tekst źródłaChung-Szu Wei, Yur-Tsai Lin, Chi-Ch. "A Performance Comparison Between Coiled and Straight Capillary Tubes". Heat Transfer Engineering 21, nr 2 (marzec 2000): 62–66. http://dx.doi.org/10.1080/014576300271031.
Pełny tekst źródłaAcharya, Narasimha, Mihir Sen i Chang Hsueh-Chia. "Heat transfer enhancement in coiled tubes by chaotic mixing". International Journal of Heat and Mass Transfer 35, nr 10 (październik 1992): 2475–89. http://dx.doi.org/10.1016/0017-9310(92)90090-f.
Pełny tekst źródłaAcharya, Narasimha, Mihir Sen i Chang Hsueh-Chia. "Thermal entrance length and Nusselt numbers in coiled tubes". International Journal of Heat and Mass Transfer 37, nr 2 (styczeń 1994): 336–40. http://dx.doi.org/10.1016/0017-9310(94)90105-8.
Pełny tekst źródłaMa, Weimin, Mingyuan Zhang i Xuejun Chen. "High-quality critical heat flux in horizontally coiled tubes". Journal of Thermal Science 4, nr 3 (wrzesień 1995): 205–11. http://dx.doi.org/10.1007/bf02650830.
Pełny tekst źródłaHart, J., J. Ellenberger i P. J. Hamersma. "Single- and two-phase flow through helically coiled tubes". Chemical Engineering Science 43, nr 4 (1988): 775–83. http://dx.doi.org/10.1016/0009-2509(88)80072-1.
Pełny tekst źródłaZhou, Guobing, i Yufeng Zhang. "Inlet pressure fluctuation characteristics of coiled adiabatic capillary tubes". Applied Thermal Engineering 33-34 (luty 2012): 183–89. http://dx.doi.org/10.1016/j.applthermaleng.2011.09.033.
Pełny tekst źródłaNada, S. A., W. G. El Shaer i A. S. Huzayyin. "Performance of multi tubes in tube helically coiled as a compact heat exchanger". Heat and Mass Transfer 51, nr 7 (4.12.2014): 973–82. http://dx.doi.org/10.1007/s00231-014-1469-z.
Pełny tekst źródłaDABAS, J. K., SUDHIR KUMAR, A. K. DODEJA i K. S. KASANA. "MODELING OF A HELICALLY COILED HFC134a EVAPORATOR". International Journal of Air-Conditioning and Refrigeration 22, nr 03 (wrzesień 2014): 1450016. http://dx.doi.org/10.1142/s2010132514500163.
Pełny tekst źródłaElsayed, A., R. K. Al-dadah, S. Mahmoud i A. Rezk. "Experimental and theoretical investigation of small-scale cooling system equipped with helically coiled evaporator and condenser". Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 226, nr 3 (14.09.2011): 724–37. http://dx.doi.org/10.1177/0954406211414790.
Pełny tekst źródłaKAEW-ON, JATUPORN, SAKARIN CHINGULPITAK i SOMCHAI WONGWISES. "EXPERIMENTAL INVESTIGATION OF R134a FLOWING THROUGH ADIABATIC HELICALLY COILED CAPILLARY TUBES". International Journal of Air-Conditioning and Refrigeration 20, nr 01 (marzec 2012): 1250001. http://dx.doi.org/10.1142/s2010132512500010.
Pełny tekst źródłaBhangle, Ms K. P. "CFD Analysis of the Optimization of Length of Capillary Tube for a Vapor Compression Refrigeration System". International Journal for Research in Applied Science and Engineering Technology 9, nr 8 (31.08.2021): 2567–78. http://dx.doi.org/10.22214/ijraset.2021.37780.
Pełny tekst źródłaElamin, M. R., Babiker Y. Abdulkhair i Kamal K. Taha. "Effect of Urea on the Shape and Structure of Carbon Nanotubes". Zeitschrift für Naturforschung A 73, nr 2 (26.01.2018): 113–20. http://dx.doi.org/10.1515/zna-2017-0288.
Pełny tekst źródłaLara, Caique, Julie Villamil, Anthony Abrahao, Aparna Aravelli, Guilherme Daldegan, Sharif Sarker, Daniel Martinez i Dwayne McDaniel. "Development of an Innovative Inspection Tool for Superheater Tubes in Fossil Fuel Power Plants". Materials Evaluation 79, nr 7 (1.07.2021): 728–38. http://dx.doi.org/10.32548/2021.me-04212.
Pełny tekst źródłaWilliams, EG, V. Kaul, JL Rouse i BF Palser. "Overgrowth of Pollen Tubes in Embryo Sacs of Rhododendron Following Interspecific Pollinations". Australian Journal of Botany 34, nr 4 (1986): 413. http://dx.doi.org/10.1071/bt9860413.
Pełny tekst źródłaYoon, Dong-Hyeog, Ju-Yeop Park i Kwang-Won Seul. "Numerical Study of Turbulent Heat Transfer in Helically Coiled Tubes". Transactions of the Korean Society of Mechanical Engineers B 36, nr 8 (1.08.2012): 783–89. http://dx.doi.org/10.3795/ksme-b.2012.36.8.783.
Pełny tekst źródłaKaji, Masou, Koji Mori, Shigeyasu Nakanishi, Kentaro Hirabayasi i Masaya Ohishi. "Dryout and Wall Temperature Fluctuations in Helically Coiled Evaporating Tubes." Transactions of the Japan Society of Mechanical Engineers Series B 61, nr 585 (1995): 1811–17. http://dx.doi.org/10.1299/kikaib.61.1811.
Pełny tekst źródłaKanatani, Kentaro, Takashi Yamamoto, Yutaka Tamaura i Hiroshige Kikura. "A model of a solar cavity receiver with coiled tubes". Solar Energy 153 (wrzesień 2017): 249–61. http://dx.doi.org/10.1016/j.solener.2017.05.061.
Pełny tekst źródłaKANATANI, Kentaro, Takashi YAMAMOTO, Yutaka TAMAURA i Hiroshige KIKURA. "A model of a solar cavity receiver with coiled tubes". Proceedings of Mechanical Engineering Congress, Japan 2017 (2017): J0540103. http://dx.doi.org/10.1299/jsmemecj.2017.j0540103.
Pełny tekst źródłaAli, Mohamed E. "Laminar natural convection from constant heat flux helical coiled tubes". International Journal of Heat and Mass Transfer 41, nr 14 (lipiec 1998): 2175–82. http://dx.doi.org/10.1016/s0017-9310(97)00322-0.
Pełny tekst źródłaAli, Mohamed E. "Experimental investigation of natural convection from vertical helical coiled tubes". International Journal of Heat and Mass Transfer 37, nr 4 (marzec 1994): 665–71. http://dx.doi.org/10.1016/0017-9310(94)90138-4.
Pełny tekst źródłaZhu, Guangyu, Xingtuan Yang, Shengyao Jiang i Hongye Zhu. "Intermittent gas-liquid two-phase flow in helically coiled tubes". International Journal of Multiphase Flow 116 (lipiec 2019): 113–24. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2019.04.013.
Pełny tekst źródłaRedlinger-Pohn, Jakob D., Lukas A. Jagiello, Wolfgang Bauer i Stefan Radl. "Mechanistic understanding of size-based fiber separation in coiled tubes". International Journal of Multiphase Flow 83 (lipiec 2016): 239–53. http://dx.doi.org/10.1016/j.ijmultiphaseflow.2016.04.008.
Pełny tekst źródłaBozzoli, F., L. Cattani, A. Mocerino i S. Rainieri. "Turbulent flow regime in coiled tubes: local heat-transfer coefficient". Heat and Mass Transfer 54, nr 8 (8.08.2017): 2371–81. http://dx.doi.org/10.1007/s00231-017-2127-z.
Pełny tekst źródła