Gotowa bibliografia na temat „Coiled tubes”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Coiled tubes”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Coiled tubes"
Akgul, Dogan, Safak Metin Kirkar, Busra Selenay Onal, Ali Celen, Ahmet Selim Dalkilic i Somchai Wongwises. "Single-phase flow heat transfer characteristics in helically coiled tube heat exchangers". Kerntechnik 87, nr 1 (1.02.2022): 1–25. http://dx.doi.org/10.1515/kern-2021-1005.
Pełny tekst źródłaAbdul- Kareem R. Abed, Hassan Jawdat Fadhiel, Gaydaa Mahsun i Thabet C. Yassen. "Experimental Study on The Effect of Capillary Tube Geometry on The Performance of Vapour Compression Refrigeration System". Diyala Journal of Engineering Sciences 7, nr 2 (1.06.2014): 47–60. http://dx.doi.org/10.24237/djes.2014.07204.
Pełny tekst źródłaINOUE, NORIHIRO, SHINITSU IKU i KAZUHIDE WATANABE. "PRESSURE DROP AND HEAT TRANSFER INSIDE THE COILED FLOW CHANNEL OF SMOOTH TUBES AND INTERNALLY HELICAL-GROOVED TUBES". International Journal of Air-Conditioning and Refrigeration 20, nr 04 (grudzień 2012): 1250023. http://dx.doi.org/10.1142/s201013251250023x.
Pełny tekst źródłaDey, Anshumaan, i Monisha M. Mandal. "Hydrodynamics Study of Oil–Water Flow in Coiled Flow Inverter". Advanced Science, Engineering and Medicine 12, nr 2 (1.02.2020): 173–80. http://dx.doi.org/10.1166/asem.2020.2485.
Pełny tekst źródłaAkeedy, Adnan Rasheed, Hajar Alias i Sami D. Salman. "HEAT TRANSFER ENHANCEMENT USING PASSIVE TECHNIQUE: REVIEW". Jurnal Teknologi 83, nr 2 (28.02.2021): 151–62. http://dx.doi.org/10.11113/jurnalteknologi.v83.14546.
Pełny tekst źródłaGao, Weikai, Xiaoyang Xie, Xiaowei Li i Xinxin Wu. "Influence of Coiling Direction of Helical Tube Bundles on the Thermal-Hydraulics of the HTGR Steam Generator". Journal of Physics: Conference Series 2048, nr 1 (1.10.2021): 012032. http://dx.doi.org/10.1088/1742-6596/2048/1/012032.
Pełny tekst źródłaGarimella, S., D. E. Richards i R. N. Christensen. "Experimental Investigation of Heat Transfer in Coiled Annular Ducts". Journal of Heat Transfer 110, nr 2 (1.05.1988): 329–36. http://dx.doi.org/10.1115/1.3250488.
Pełny tekst źródłaHaryoko, Luthfi A. F., Jundika C. Kurnia i Agus P. Sasmito. "Numerical Investigation of Subcooled Boiling Heat Transfer in Helically-Coiled Tube". International Journal of Automotive and Mechanical Engineering 17, nr 1 (30.03.2020): 7675–86. http://dx.doi.org/10.15282/ijame.17.1.2020.15.0570.
Pełny tekst źródłaMishani, Siamak, Brian Evans, Vamegh Rasouli, Reem Roufail, Soren Soe i Peter Jaensch. "Interlaminar modelling to predict composite coiled tube failure". APPEA Journal 55, nr 1 (2015): 361. http://dx.doi.org/10.1071/aj14029.
Pełny tekst źródłaQuinlan, R. A., i M. Stewart. "Crystalline tubes of myosin subfragment-2 showing the coiled-coil and molecular interaction geometry." Journal of Cell Biology 105, nr 1 (1.07.1987): 403–15. http://dx.doi.org/10.1083/jcb.105.1.403.
Pełny tekst źródłaRozprawy doktorskie na temat "Coiled tubes"
Mao, Jie. "Falling film absorption on horizontal and coiled tubes /". The Ohio State University, 1996. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487942182324639.
Pełny tekst źródłaElsayed, Ahmed Mohamed. "Heat transfer in helically coiled small diameter tubes for miniature cooling systems". Thesis, University of Birmingham, 2011. http://etheses.bham.ac.uk//id/eprint/2907/.
Pełny tekst źródłaZhang, Hongyang. "Experimental Study of Cuttings Transport in Coiled Tube Micro-Borehole Drilling". Thesis, Curtin University, 2018. http://hdl.handle.net/20.500.11937/68365.
Pełny tekst źródłaWiedmeyer, Viktoria [Verfasser], i Kai [Gutachter] Sundmacher. "Continuous crystallization in a helically coiled flow tube crystallizer / Viktoria Wiedmeyer ; Gutachter: Kai Sundmacher". Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2020. http://d-nb.info/1219965286/34.
Pełny tekst źródłaWiedmeyer, Viktoria Verfasser], i Kai [Gutachter] [Sundmacher. "Continuous crystallization in a helically coiled flow tube crystallizer / Viktoria Wiedmeyer ; Gutachter: Kai Sundmacher". Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2020. http://d-nb.info/1219965286/34.
Pełny tekst źródłaMishani, Siamak. "Investigation of fatigue failure in composite versus steel coiled tube for application in mine site drilling". Thesis, Curtin University, 2017. http://hdl.handle.net/20.500.11937/59665.
Pełny tekst źródłaPrabhanjan, Devanahalli G. "Influence of coil characteristics on heat transfer to Newtonian fluids". Thesis, McGill University, 2000. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=36910.
Pełny tekst źródłaComparative study has shown that the outer and total heat transfer coefficients were significantly lower in natural than in forced convection water bath. However, inner heat transfer coefficient was not significantly affected. Flow rate as low as 0.001 m.s-1 in the water bath improved the outer and total heat transfer coefficients by 35 and 22% respectively. One could expect a higher rate with an increase in water re-circulation rate inside the water bath. Percent rise in heat transfer was limited to seven with respect to inner heat transfer. With the Pearson correlation, it was possible to express total heat transfer rate directly in terms of outer and inner rates. Significant interactions were observed between variables and constants.
Experiments with 2 pitch cases were conducted with water to water heat transfer using coils to determine the Nusselt number correlation for natural convection. Characteristic lengths were changed in the models. The Nusselt number was under-predicted by 25 to 37% for water bath temperatures of 75° and 95°C respectively. Flow rate inside the coil had slight effect on Nusselt number due to change in the temperature gradient along the length of the coil.
Studies conducted with three base oils have shown significant difference in viscosity after heating the oil for several turns. Each fluid was heated in a distinct flow regime. The observed Nusselt number inside the coil for low Reynolds number was as high as an order of magnitude than the predicted values calculated by Seider-Tate relation for laminar flow. Vorticies formed associated with the eddy structure could very well be the cause for this kind of rise in the value.
Preliminary study conducted has shown a higher rise in temperature of processing fluid in case of helical coil compared to that of a straight tube. Larger the diameter of the tube better was the heat transfer. An elevated bath temperature had higher heat transfer.
Geier, Martin. "Influência dos parâmetros envolvidos no processo de união por interferência de tubos por cravamento eletromagnético". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/96295.
Pełny tekst źródłaJoining of tubular profiles with high electrical conductivity by electromagnetic forming (EMF) is an innovative and clean technology that can successfully replace conventional joining technologies based on mechanical fixing with fasteners, rivets, welding and structural adhesives. The technology works at room temperature, allows joining dissimilar materials and offers potential to foster new applications in the assembly of lightweight tubular frame structures. This work investigates the interference-fit joining of tubes by electromagnetic crimping in terms of its major parameters with the aim of identifying their influence on the overall strength of the joints and establishing the useful range of process operating conditions. Initially, the theoretical principles of EMF and its main operational process variants are presented, followed by a summary of the current state of the knowledge of its application in the joining of tubular profiles in which it is found that the mechanical parameters are the residual stress at the joint interface, the area and shape of the joint interface and the friction coefficient between the joining partners. However, these parameters are related in a very complex way with the electromagnetic crimping process parameters, starting with the charging energy and by the machine and tool which generates the distribution of the magnetic pressure pulse that “triggers” the forming process, the initial gap between joining partners, the mandrel properties such as material, geometry, shape and surface roughness. The experimental study focuses the interference-fit of aluminum tubes (AA6082-O) on mandrels made of different materials and metallurgical conditions (AISI 1045, AA6082-O and AA6082-T6) and, therefore, the process is analyzed by the gradual influence of other process parameters aiming to achieve high strength joints. Results show that the joint strength and the associated failure mechanisms are directly related to process parameters and mandrel conditions. In addition, other important contributions are presented regarding the instrumentation for measuring the magnetic flux and overall process efficiency and to the development and implementation of this technology in industrial processes.
Anderson, Brian Eric. "Derivation of Moving-Coil Loudspeaker Parameters Using Plane Wave Tube Techniques". BYU ScholarsArchive, 2004. https://scholarsarchive.byu.edu/etd/17.
Pełny tekst źródłaLagat, Christopher Kipchumba. "Evaluation and selection of an optimum material for coil tubes in CT drilling technology for hard rocks in mineral exploration". Thesis, Curtin University, 2015. http://hdl.handle.net/20.500.11937/116.
Pełny tekst źródłaKsiążki na temat "Coiled tubes"
Society of Petroleum Engineers (U.S.), red. Coiled-tubing technology. Richardson, Tex: Society of Petroleum Engineers, 1994.
Znajdź pełny tekst źródłaThe International Coiled Tubing Association. Coiled Tubing Welding Specification for Tube-to-tube Welds. Society of Petroleum, 1999.
Znajdź pełny tekst źródłaCorum, James F., i Kenneth L. Corum. Vacuum Tube Tesla Coils. Corum & Associates, Incorporated, 1988.
Znajdź pełny tekst źródłaParker, Philip M. The 2007-2012 World Outlook for Shell-And-Tube, Shell-And-Coil, Shell-And-U-Tube, and Tube-In-Tube Condensers for Heat Transfer. ICON Group International, Inc., 2006.
Znajdź pełny tekst źródłaThe 2006-2011 World Outlook for Shell-And-Tube, Shell-And-Coil, Shell-And-U-Tube, and Tube-In-Tube Condensers for Heat Transfer. Icon Group International, Inc., 2005.
Znajdź pełny tekst źródłaParker, Philip M. The 2007-2012 World Outlook for Shell-And-Tube, Shell-And-Coil, Shell-And-U-Tube, and Tube-In-Tube Liquid Coolers for Heat Transfer. ICON Group International, Inc., 2006.
Znajdź pełny tekst źródłaThe 2006-2011 World Outlook for Shell-And-Tube, Shell-And-Coil, Shell-And-U-Tube, and Tube-In-Tube Liquid Coolers for Heat Transfer. Icon Group International, Inc., 2005.
Znajdź pełny tekst źródłaSeipel, Catherine P., i Titilopemi A. O. Aina. Tracheoesophageal Fistula Repair. Redaktorzy Erin S. Williams, Olutoyin A. Olutoye, Catherine P. Seipel i Titilopemi A. O. Aina. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190678333.003.0048.
Pełny tekst źródłaThe 2006-2011 World Outlook for Air Conditioning-And Refrigeration-Type Central System Standard Steam and Steam Distributing Tube Finned Coils. Icon Group International, Inc., 2005.
Znajdź pełny tekst źródłaParker, Philip M. The 2007-2012 World Outlook for Air Conditioning-And Refrigeration-Type Central System Standard Steam and Steam Distributing Tube Finned Coils. ICON Group International, Inc., 2006.
Znajdź pełny tekst źródłaCzęści książek na temat "Coiled tubes"
Gnielinski, Volker. "G3 Heat Transfer in Helically Coiled Tubes". W VDI Heat Atlas, 709–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-77877-6_36.
Pełny tekst źródłaBhuvaneswari, S., i G. Elatharasan. "Numerical Study of Heat Transfer and Pressure Drop in a Helically Coiled Tubes". W Lecture Notes in Mechanical Engineering, 785–96. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4488-0_66.
Pełny tekst źródłaAli, Nazim, i Monisha Mridha Mandal. "Immiscible Liquid-Liquid Flow in Coiled Tube". W Intelligent Computing Applications for Sustainable Real-World Systems, 307–19. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-44758-8_28.
Pełny tekst źródłaFsadni, A. M., J. P. M. Whitty, A. A. Adeniyi, J. Simo i H. L. Brooks. "A Review on the Application of Nanofluids in Coiled Tube Heat Exchangers". W Micro and Nanomanufacturing Volume II, 443–65. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-67132-1_15.
Pełny tekst źródłaFrolov, S. M., I. V. Semenov, I. F. Ahmedyanov i V. V. Markov. "Shock-to-detonation transition in tube coils". W Shock Waves, 365–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85168-4_58.
Pełny tekst źródłaShinde, Amol D., i Amarsingh B. Kanase-Patil. "Investigation of Tube in Tube Helical Coil Heat Exchanger with Different Inner Tube Configuration". W Techno-Societal 2020, 457–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-69925-3_45.
Pełny tekst źródłaSaravana Bhavan, P., i J. Selwin Rajadurai. "Investigation on Helical Coiled Tube Heat Exchanger for Parallel and Counter Flow Using CFD Analysis". W Lecture Notes in Mechanical Engineering, 571–88. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-3631-1_56.
Pełny tekst źródłaKumar, Sanyog, i A. R. Jaurker. "Thermal Performance Analysis of Eccentric Helical Coil Tube in Tube Heat Exchanger Using CFD". W Lecture Notes in Mechanical Engineering, 143–55. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2921-4_14.
Pełny tekst źródłaKadam, Nilesh K., i A. R. Acharya. "Experimental Investigation of Helical Coil Tube in Tube Heat Exchanger with Microfins Using Al2O3/Water Nano Fluid". W Lecture Notes in Mechanical Engineering, 855–71. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5463-6_76.
Pełny tekst źródłaKumar, Ravi, Anil Kumar Patil i Manoj Kumar. "Thermal Performance of Multiple Tube Sensible Energy Storage with Coil Inserts". W Green Energy and Technology, 61–66. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-2279-6_6.
Pełny tekst źródłaStreszczenia konferencji na temat "Coiled tubes"
Conte´, Ibrahima, Xiao-Feng Peng i Zhen Yang. "Numerical Investigations of Forced Convection From Rectangular Coiled Pipes". W 2007 First International Conference on Integration and Commercialization of Micro and Nanosystems. ASMEDC, 2007. http://dx.doi.org/10.1115/mnc2007-21136.
Pełny tekst źródłaLagat, Christopher, Reem Roufail, Vamegh Rasouli, Brian Evans i Soren Soe. "Experimental Investigation of Steel Coiled Tubes Performance Under Cyclic Bending". W ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23208.
Pełny tekst źródłaZhu, Guangyu, i Hongye Zhu. "Numerical Simulation of Interfacial Phenomenon of Air-Water Adiabatic Intermittent Flow in Helically Coiled Tubes". W 2016 24th International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/icone24-60221.
Pełny tekst źródłaGhobadi, M., i Y. S. Muzychka. "Pressure Drop in Mini-Scale Coiled Tubing". W ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63348.
Pełny tekst źródłaChen, Chang-Nian, Ji-Tian Han, Li Shao, Tien-Chien Jen i Yi-Hsin Yen. "Design of Equipment for Manufacturing Helically-Coiled Tubes and its Automatic Control System". W ASME 2010 International Mechanical Engineering Congress and Exposition. ASMEDC, 2010. http://dx.doi.org/10.1115/imece2010-37146.
Pełny tekst źródłaAdrugi, W., Y. S. Muzychka i K. Pope. "Pressure Drop of Liquid-Liquid Taylor Flow in Mini-Scale Coiled and Curved Tubing". W ASME 2019 17th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/icnmm2019-4219.
Pełny tekst źródłaIshikawa, Masa-aki, Hiroshi Oiwa, Kosuke Sakai, Yuichi Murai, Shin-ichi Toda, Kiyoshi Tamayama i Fujio Yamamoto. "Flow Structure and Pressure Loss of Two-Phase Flow in Helically Coiled Tubes". W ASME/JSME 2003 4th Joint Fluids Summer Engineering Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/fedsm2003-45376.
Pełny tekst źródłaGnielinski, Volker. "HEAT TRANSFER AND PRESSURE DROP IN HELICALLY COILED TUBES". W International Heat Transfer Conference 8. Connecticut: Begellhouse, 1986. http://dx.doi.org/10.1615/ihtc8.1360.
Pełny tekst źródłaChen, Chang-Nian, Ji-Tian Han, Li Shao, Wen-Wen Chen i Tien-Chien Jen. "Experimental Study on CHF Characteristics of R134a Flow Boiling in Horizontal Helically-Coiled Tubes". W 2010 14th International Heat Transfer Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/ihtc14-22579.
Pełny tekst źródłaKaew-On, Jatuporn, Santiphap Nakkaew i Somchai Wongwises. "Single-Phase Heat Transfer in the Straight and Helically Coiled Tubes". W ASME 2013 11th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icnmm2013-73109.
Pełny tekst źródłaRaporty organizacyjne na temat "Coiled tubes"
Villamil, Julie, Caique Lara, Anthony Abrahao, Aparna Arvelli, Guilherme Daldegan, Sharif Sarker i Dwayne McDaniel. Development of a Pipe Crawler Inspection Tool for Fossil Energy Power Plants. Florida International University, październik 2021. http://dx.doi.org/10.25148/mmeurs.009772.
Pełny tekst źródłaPeterson, Per F. Coiled Tube Gas Heaters For Nuclear Gas-Brayton Power Conversion. Office of Scientific and Technical Information (OSTI), marzec 2018. http://dx.doi.org/10.2172/1434471.
Pełny tekst źródłaLee S. Y. BETATRON TUNES and the CURRENT in the QUADRUPOLE TRIM COIL. Office of Scientific and Technical Information (OSTI), czerwiec 1990. http://dx.doi.org/10.2172/1150547.
Pełny tekst źródłaBlanchard, A. Relocation Impacts of an H-Separations Coil and Tube Failure. Office of Scientific and Technical Information (OSTI), sierpień 1999. http://dx.doi.org/10.2172/9557.
Pełny tekst źródłaBlanchard, A. Relocation impacts of an H-Separations coil and tube failure. Office of Scientific and Technical Information (OSTI), marzec 2000. http://dx.doi.org/10.2172/752132.
Pełny tekst źródłaBlanchard, A. Ingestion Pathway Consequences of an H-Separations Coil and Tube Failure. Office of Scientific and Technical Information (OSTI), sierpień 1999. http://dx.doi.org/10.2172/9556.
Pełny tekst źródłaSagaiyaraj, Bernard. Increasing Energy Efficiency of Central Cooling Systems with Engineered Nanofluids. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau538344493.
Pełny tekst źródłaRichard A. Corbett i Dave Severance. DEVELOPMENT OF A REPRODUCIBLE SCREENING METHOD TO DETERMINE THE MECHANISM AND EFFECT OF ORGANIC ACIDS AND OTHER CONTAMINANTS ON THE CORROSION OF ALUMINUM-FINNED COPPER-TUBE HEAT EXCHANGE COILS. Office of Scientific and Technical Information (OSTI), luty 2005. http://dx.doi.org/10.2172/877662.
Pełny tekst źródłaNikolaev, Valeri. Study of the Process of Mixing, Temperature, and Small Signal Gain in the Active Medium of Supersonic COIL With Advanced Nozzle Bank and DC Discharge Method of O2(1 Delta) Production in a Vortex Tube. Fort Belvoir, VA: Defense Technical Information Center, lipiec 2001. http://dx.doi.org/10.21236/ada389462.
Pełny tekst źródła