Gotowa bibliografia na temat „Cohomology of condensed groups”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Cohomology of condensed groups”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Cohomology of condensed groups"
Rodrigues Jacinto, Joaquín, i Juan Rodríguez Camargo. "Solid locally analytic representations of 𝑝-adic Lie groups". Representation Theory of the American Mathematical Society 26, nr 31 (31.08.2022): 962–1024. http://dx.doi.org/10.1090/ert/615.
Pełny tekst źródłaArtusa, Marco. "Duality for condensed cohomology of the Weil group of a $p$-adic field". Documenta Mathematica 29, nr 6 (26.11.2024): 1381–434. http://dx.doi.org/10.4171/dm/977.
Pełny tekst źródłaGähler, Franz, i Johannes Kellendonk. "Cohomology groups for projection tilings of codimension 2". Materials Science and Engineering: A 294-296 (grudzień 2000): 438–40. http://dx.doi.org/10.1016/s0921-5093(00)01171-0.
Pełny tekst źródłaFISHER, BENJI N., i DAVID A. RABSON. "Group Cohomology and Quasicrystals I: Classification of Two-Dimensional Space Groups". Ferroelectrics 305, nr 1 (styczeń 2004): 37–40. http://dx.doi.org/10.1080/00150190490462360.
Pełny tekst źródłaConduché, Daniel, Hvedri Inassaridze i Nick Inassaridze. "Modq cohomology and Tate–Vogel cohomology of groups". Journal of Pure and Applied Algebra 189, nr 1-3 (maj 2004): 61–87. http://dx.doi.org/10.1016/j.jpaa.2003.10.025.
Pełny tekst źródłaInassaridze, H. "Non-Abelian Cohomology of Groups". gmj 4, nr 4 (sierpień 1997): 313–31. http://dx.doi.org/10.1515/gmj.1997.313.
Pełny tekst źródłaThomas, C. B. "COHOMOLOGY OF FINITE GROUPS". Bulletin of the London Mathematical Society 29, nr 1 (styczeń 1997): 121–23. http://dx.doi.org/10.1112/blms/29.1.121.
Pełny tekst źródłaHiller, Howard. "Cohomology of Bieberbach groups". Mathematika 32, nr 1 (czerwiec 1985): 55–59. http://dx.doi.org/10.1112/s002557930001086x.
Pełny tekst źródłaHuebschmann, Johannes. "Cohomology of metacyclic groups". Transactions of the American Mathematical Society 328, nr 1 (1.01.1991): 1–72. http://dx.doi.org/10.1090/s0002-9947-1991-1031239-1.
Pełny tekst źródłaPirashvili, Mariam. "Symmetric cohomology of groups". Journal of Algebra 509 (wrzesień 2018): 397–418. http://dx.doi.org/10.1016/j.jalgebra.2018.05.020.
Pełny tekst źródłaRozprawy doktorskie na temat "Cohomology of condensed groups"
Artusa, Marco. "Sur des théorèmes de dualité pour la cohomologie condensée du groupe de Weil d'un corps p-adique". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0228.
Pełny tekst źródłaThe goal of this thesis is twofold. First, we build a topological cohomology theory for the Weil group of p-adic fields. Secondly, we use this theory to prove duality theorems for such fields, which manifest as Pontryagin duality between locally compact abelian groups. These results improve existing duality theorems and give them a topological flavour. Condensed Mathematics allow us to reach these objectives, providing a framework where it is possible to do algebra with topological objects. We define and study a cohomology theory for condensed groups and pro-condensed groups, and we apply it to the Weil group of a p-adic field, considered as a pro-condensed group. The resulting cohomology groups are proved to be locally compact abelian groups of finite ranks in some special cases. This allows us to enlarge the local Tate duality to a more general category of non-necessarily discrete coefficients, where it takes the form of a Pontryagin duality between locally compact abelian groups. In the last part of the thesis, we use the same framework to recover a Weil-version of the Tate duality with coefficients in abelian varieties and more generally in 1-motives, expressing those dualities as perfect pairings between condensed abelian groups. To do this, we associate to every algebraic group, resp. 1-motive, a condensed abelian group, resp. a complex of condensed abelian groups, with an action of the (pro-condensed) Weil group. We call this association the condensed Weil-´etale realisation. We show the existence of a condensed Poincar´e pairing for abelian varieties and we prove a condensed-Weil version of the Tate duality with coefficients in abelian varieties, which improves the correspondent result of Karpuk. Lastly, we exhibit a condensed Poincar´e pairing for 1-motives. We show that this pairing is compatible with the weight filtration and we prove a duality theorem with coefficients in 1-motives, which improves a result of Harari-Szamuely
Watson, Toni Aliza. "Twisted cohomology groups". College Park, Md. : University of Maryland, 2006. http://hdl.handle.net/1903/3929.
Pełny tekst źródłaThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Česnavičius, Kęstutis. "Selmer groups as flat cohomology groups". Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/90180.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references (pages 44-46).
Given a prime number p, Bloch and Kato showed how the p Selmer group of an abelian variety A over a number field K is determined by the p-adic Tate module. In general, the pm1-Selmer group Selpmn A need not be determined by the mod pm Galois representation A[pm]; we show, however, that this is the case if p is large enough. More precisely, we exhibit a finite explicit set of rational primes E depending on K and A, such that Selpm A is determined by A[pm] for all ... In the course of the argument we describe the flat cohomology group ... of the ring of integers of K with coefficients in the pm- torsion A[pm] of the Neron model of A by local conditions for p V E, compare them with the local conditions defining Selm 2A, and prove that A[p't ] itself is determined by A[pm] for such p. Our method sharpens the relationship between Selpm A and ... which was observed by Mazur and continues to work for other isogenies 0 between abelian varieties over global fields provided that deg o is constrained appropriately. To illustrate it, we exhibit resulting explicit rank predictions for the elliptic curve 11A1 over certain families of number fields. Standard glueing techniques developed in the course of the proofs have applications to finite flat group schemes over global bases, permitting us to transfer many of the known local results to the global setting.
by Kęstutis Česnavičius.
Ph. D.
Clark, Jonathan Owen. "Cohomology of some finite groups". Thesis, University of Oxford, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.240535.
Pełny tekst źródłaEastridge, Samuel Vance. "First l^2-Cohomology Groups". Thesis, Virginia Tech, 2015. http://hdl.handle.net/10919/52952.
Pełny tekst źródłaMaster of Science
QUADRELLI, CLAUDIO. "Cohomology of Absolute Galois Groups". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2014. http://hdl.handle.net/10281/56993.
Pełny tekst źródłaLeary, Ian James. "The cohomology of certain finite groups". Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386114.
Pełny tekst źródłaKim, Yunhyong. "Smooth cochain cohomology of loop groups". Thesis, University of Cambridge, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.621575.
Pełny tekst źródłaFoster-Greenwood, Briana A. "Hochschild Cohomology and Complex Reflection Groups". Thesis, University of North Texas, 2012. https://digital.library.unt.edu/ark:/67531/metadc149591/.
Pełny tekst źródłaAnwar, Muhammad F. "Representations and cohomology of algebraic groups". Thesis, University of York, 2011. http://etheses.whiterose.ac.uk/2032/.
Pełny tekst źródłaKsiążki na temat "Cohomology of condensed groups"
Adem, Alejandro, i R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-06280-7.
Pełny tekst źródłaAdem, Alejandro, i R. James Milgram. Cohomology of Finite Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-662-06282-1.
Pełny tekst źródłaCogdell, James W., Günter Harder, Stephen Kudla i Freydoon Shahidi, red. Cohomology of Arithmetic Groups. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95549-0.
Pełny tekst źródłaJames, Milgram R., red. Cohomology of finite groups. Wyd. 2. Berlin: Springer, 2004.
Znajdź pełny tekst źródłaJames, Milgram R., red. Cohomology of finite groups. Berlin: Springer-Verlag, 1994.
Znajdź pełny tekst źródłaVermani, L. R. Lectures on cohomology of groups. Kurukshetra: Publication Bureau, Kurukshetra University, 1994.
Znajdź pełny tekst źródłaLang, Serge. Topics in Cohomology of Groups. Berlin, Heidelberg: Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/bfb0092624.
Pełny tekst źródłaCarlson, Jon F., Lisa Townsley, Luis Valeri-Elizondo i Mucheng Zhang. Cohomology Rings of Finite Groups. Dordrecht: Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0215-7.
Pełny tekst źródłaMaulik, Davesh. Quantum groups and quantum cohomology. Paris: Société Mathématique de France, 2019.
Znajdź pełny tekst źródłaLang, Serge. Topics in cohomology of groups. Berlin: Springer, 1996.
Znajdź pełny tekst źródłaCzęści książek na temat "Cohomology of condensed groups"
Jantzen, Jens. "Cohomology". W Representations of Algebraic Groups, 49–64. Providence, Rhode Island: American Mathematical Society, 2007. http://dx.doi.org/10.1090/surv/107/04.
Pełny tekst źródłaBump, Daniel. "Cohomology of Grassmannians". W Lie Groups, 517–27. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8024-2_48.
Pełny tekst źródłaBump, Daniel. "Cohomology of Grassmannians". W Lie Groups, 428–37. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-4094-3_50.
Pełny tekst źródłaMac Lane, Saunders. "Cohomology of Groups". W Homology, 103–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/978-3-642-62029-4_5.
Pełny tekst źródłaHilton, Peter J., i Urs Stammbach. "Cohomology of Groups". W A Course in Homological Algebra, 184–228. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4419-8566-8_7.
Pełny tekst źródłaHalter-Koch, Franz. "Cohomology of groups". W Class Field Theory and L Functions, 87–154. Boca Raton: Chapman and Hall/CRC, 2022. http://dx.doi.org/10.1201/9780429506574-2.
Pełny tekst źródłaWedhorn, Torsten. "Lie Groups". W Manifolds, Sheaves, and Cohomology, 123–37. Wiesbaden: Springer Fachmedien Wiesbaden, 2016. http://dx.doi.org/10.1007/978-3-658-10633-1_6.
Pełny tekst źródłaKoch, Helmut. "Cohomology of Profinite Groups". W Springer Monographs in Mathematics, 21–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-662-04967-9_4.
Pełny tekst źródłaHarari, David. "Cohomology of Profinite Groups". W Galois Cohomology and Class Field Theory, 65–78. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-43901-9_4.
Pełny tekst źródłaSerre, Jean-Pierre. "Cohomology of profinite groups". W Springer Monographs in Mathematics, 1–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-642-59141-9_1.
Pełny tekst źródłaStreszczenia konferencji na temat "Cohomology of condensed groups"
Masuoka, Akira. "Hopf cohomology vanishing via approximation by Hochschild cohomology". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-8.
Pełny tekst źródłaBONANZINGA, V., i L. SORRENTI. "LEXSEGMENT IDEALS AND SIMPLICIAL COHOMOLOGY GROUPS". W Selected Contributions from the 8th SIMAI Conference. WORLD SCIENTIFIC, 2007. http://dx.doi.org/10.1142/9789812709394_0016.
Pełny tekst źródłaVenkataramana, T. N. "Cohomology of Arithmetic Groups and Representations". W Proceedings of the International Congress of Mathematicians 2010 (ICM 2010). Published by Hindustan Book Agency (HBA), India. WSPC Distribute for All Markets Except in India, 2011. http://dx.doi.org/10.1142/9789814324359_0100.
Pełny tekst źródłaKhalkhali, M., i B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Pełny tekst źródłaVENKATESH, AKSHAY. "COHOMOLOGY OF ARITHMETIC GROUPS - FIELDS MEDAL LECTURE". W International Congress of Mathematicians 2018. WORLD SCIENTIFIC, 2019. http://dx.doi.org/10.1142/9789813272880_0014.
Pełny tekst źródłaSAKANE, YUSUKE, i TAKUMI YAMADA. "HARMONIC COHOMOLOGY GROUPS ON COMPACT SYMPLECTIC NILMANIFOLDS". W Proceedings of the International Conference on Modern Mathematics and the International Symposium on Differential Geometry. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812776419_0014.
Pełny tekst źródłaSOMA, TERUHIKO. "THE THIRD BOUNDED COHOMOLOGY AND KLEINIAN GROUPS". W Proceedings of the 37th Taniguchi Symposium. WORLD SCIENTIFIC, 1996. http://dx.doi.org/10.1142/9789814503921_0015.
Pełny tekst źródłaLI, JIAN-SHU, i JOACHIM SCHWERMER. "AUTOMORPHIC REPRESENTATIONS AND COHOMOLOGY OF ARITHMETIC GROUPS". W Proceedings of the International Conference on Fundamental Sciences: Mathematics and Theoretical Physics. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811264_0005.
Pełny tekst źródłaSharygin, G. I. "Hopf-type Cyclic Cohomology via the Karoubi Operator". W Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-14.
Pełny tekst źródłaCallegaro, Filippo, Davide Moroni i Mario Salvetti. "Cohomology of Artin groups of type \tildeAn, Bn and applications". W Groups, homotopy and configuration spaces, in honour of Fred Cohen's 60th birthday. Mathematical Sciences Publishers, 2008. http://dx.doi.org/10.2140/gtm.2008.13.85.
Pełny tekst źródłaRaporty organizacyjne na temat "Cohomology of condensed groups"
Holod, Petro I. Geometric Quantization, Cohomology Groups and Intertwining Operators. GIQ, 2012. http://dx.doi.org/10.7546/giq-1-2000-95-104.
Pełny tekst źródła