Gotowa bibliografia na temat „COEFFICIENTS FOR DISCHARGE”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „COEFFICIENTS FOR DISCHARGE”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "COEFFICIENTS FOR DISCHARGE"
Hong, Moongeun, Jaehyoung Jeon i Soo Yong Lee. "Discharge Coefficient of Pressure-Swirl Atomizers with Low Nozzle Opening Coefficients". Journal of Propulsion and Power 28, nr 1 (styczeń 2012): 213–18. http://dx.doi.org/10.2514/1.b34168.
Pełny tekst źródłaChen, Yuejun, Zongfu Fu, Qingsheng Chen i Zhen Cui. "Discharge Coefficient of Rectangular Short-Crested Weir with Varying Slope Coefficients". Water 10, nr 2 (14.02.2018): 204. http://dx.doi.org/10.3390/w10020204.
Pełny tekst źródłaMishra, P. K., Wernher Brevis i Cornelia Lang. "Discharge Coefficients for Baffle-Sluice Gates". Journal of Irrigation and Drainage Engineering 139, nr 4 (kwiecień 2013): 336–40. http://dx.doi.org/10.1061/(asce)ir.1943-4774.0000550.
Pełny tekst źródłaDarrel M. Temple. "Discharge Coefficients for Vegetated Earth Embankments". Applied Engineering in Agriculture 4, nr 1 (1988): 53–55. http://dx.doi.org/10.13031/2013.26579.
Pełny tekst źródłaFox, T. A., i J. Stark. "Discharge Coefficients for Miniature Fuel Injectors". Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 203, nr 1 (styczeń 1989): 75–78. http://dx.doi.org/10.1243/pime_proc_1989_203_056_01.
Pełny tekst źródłaBurm, K. T. A. L. "Calculation of the Townsend Discharge Coefficients and the Paschen Curve Coefficients". Contributions to Plasma Physics 47, nr 3 (maj 2007): 177–82. http://dx.doi.org/10.1002/ctpp.200710025.
Pełny tekst źródłaRio-Cano, Carlos, Navid M. Tousi, Josep M. Bergada i Angel Comas. "Discharge Coefficients of a Heavy Suspension Nozzle". Applied Sciences 11, nr 6 (15.03.2021): 2619. http://dx.doi.org/10.3390/app11062619.
Pełny tekst źródłaSavage, Bruce M., Bryan Heiner i Steven L. Barfuss. "Parshall flume discharge correction coefficients through modelling". Proceedings of the Institution of Civil Engineers - Water Management 167, nr 5 (maj 2014): 279–87. http://dx.doi.org/10.1680/wama.12.00112.
Pełny tekst źródłaLefebvre, Arthur H., i S. Kevin Chen. "DISCHARGE COEFFICIENTS FOR PLAIN-ORIFICE EFFERVESCENT ATOMIZERS". Atomization and Sprays 4, nr 3 (1994): 275–90. http://dx.doi.org/10.1615/atomizspr.v4.i3.30.
Pełny tekst źródłaSpencer, Adrian. "Discharge Coefficients of Ports with Stepped Inlets". Aerospace 5, nr 3 (19.09.2018): 97. http://dx.doi.org/10.3390/aerospace5030097.
Pełny tekst źródłaRozprawy doktorskie na temat "COEFFICIENTS FOR DISCHARGE"
Tingey, Samuel Egnew. "Discharge Coefficients of Oblique Weirs". DigitalCommons@USU, 2011. https://digitalcommons.usu.edu/etd/1010.
Pełny tekst źródłaKinsman, Roger Gordon. "Outlet discharge coefficients of ventilation ducts". Thesis, McGill University, 1990. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=59271.
Pełny tekst źródłaDischarge coefficients of a wooden ventilation duct 8.54 metres in length and of a constant 0.17 m$ sp2$ cross sectional area were measured. Four different outlet shapes and 3 aperture ratios of each shape were tested. A split plot experimental design was used to evaluate the effect of outlet shape, outlet size, and distance from the fan on discharge coefficient. The relationship between duct performance characteristics and discharge coefficient was examined. A mathematical equation to predict the discharge coefficient was developed and tested.
Discharge coefficient values measured ranged from 0.19 to 1.25 depending on the aperture ratio and distance from the fan. Outlet shape had no significant effect. The apparent effects of aperture ratio and size are due to the effects of head ratio. The equation predicting the discharge coefficient had a maximum error of 5 percent for the aperture ratios of 0.5 and 1.0, and 15 percent at an aperture ratio of 1.5.
Yip, C. W. H. "Compressible discharge coefficients of branching flows". Thesis, University of Aberdeen, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233007.
Pełny tekst źródłaRowbury, David. "Discharge coefficients of nozzle guide vane film cooling holes". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365838.
Pełny tekst źródłaGault, R. I. "Alternative methods for determining coefficients of discharge for engine simulation". Thesis, Queen's University Belfast, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273271.
Pełny tekst źródłaBeauchemin, Melanie. "Investigations of nozzle discharge coefficients in a compliant air bearing system". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0002/MQ45870.pdf.
Pełny tekst źródłaNtamba, Ntamba Butteur Mulumba. "Non-Newtonian pressure loss and discharge coefficients for short square-edged orifices plates". Thesis, Cape Peninsula University of Technology, 2011. http://hdl.handle.net/20.500.11838/1252.
Pełny tekst źródłaDespite the extensive research work carried out on flow through short square-edged orifice plates over the last century (e.g. Johansen, 1930; Benedict, 1977; Alvi et al., 1978; Swamee, 2005; ESDU, 2007), gaps in the engineering data still exist for certain ranges of flow conditions and geometries. The majority of data available in the literature are for Newtonian fluids in the turbulent flow regime (ESDU, 2007). Insufficient data have been observed for the orifice with pipe diameter ratio, β = 0.2, in the laminar flow regime. There are no experimental data for β = 0.3 and 0.57. The objective of this thesis was to conduct wide-ranging experimental studies of the flow in orifice plates, which included those geometrical configurations, by measuring pressure loss coefficients and discharge coefficients across the orifice plates using both Newtonian fluids and non-Newtonian fluids in both laminar and turbulent flow regimes. The test work was conducted on the valve test rig at the Cape Peninsula University of Technology. Four classical circular short square-edged orifice plates having, β = 0.2, 0.3, 0.57 and 0.7, were tested. In addition, two generation 0 Von Koch orifice plates (Von Koch, 1904), with equivalent cross sectional area were also tested for β = 0.57. Water was used as Newtonian fluid to obtain turbulent regime data and also for calibration purposes to ensure measurement accuracy and carboxymethyl cellulose, bentonite and kaolin slurries were used at different concentrations to obtain laminar and transitional loss coefficient data. The hydraulic grade line method was used to evaluate pressure loss coefficients (Edwards et al., 1985), while the flange tap arrangement method was used to determine the discharge coefficients (ESDU, 2007). A tube viscometer with three different pipe diameters was used to obtain the rheological properties of the fluids. The results for each test are presented in the form of pressure loss coefficient (kor) and discharge coefficient (Cd) against pipe Reynolds number (Re)
Devkota, Jay P. "Variation of Manning’s Roughness Coefficient with Diameter, Discharge, Slope and Depth in Partially Filled HDPE Culverts". Youngstown State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1340991250.
Pełny tekst źródłaYendodu, Vishnu Vardhan Reddy. "A comprehensive database on air plasma kinetics". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25762/.
Pełny tekst źródłaJohnson, Michael Clyde. "Discharge Coefficient Scale Effects Analysis for Weirs". DigitalCommons@USU, 1996. https://digitalcommons.usu.edu/etd/7604.
Pełny tekst źródłaKsiążki na temat "COEFFICIENTS FOR DISCHARGE"
Beauchemin, Mélanie. Investigations of nozzle discharge coefficients in a compliant air bearing system. Ottawa: National Library of Canada, 1999.
Znajdź pełny tekst źródłaMartin, C. N. B. Effects of upstream bends and valves on orifice plate pressure distributions and discharge coefficients. Glasgow: National Engineering Laboratory, 1986.
Znajdź pełny tekst źródłaR, DeBonis James, i United States. National Aeronautics and Space Administration., red. Experimental and analytical studies of flow through a ventral and axial exhaust nozzle system for STOVL aircraft. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Znajdź pełny tekst źródłaR, Whetstone James, i National Institute of Standards and Technology (U.S.), red. Measurements of coefficients of discharge for concentric flange-tapped square-edged orifice meters in water over the Reynolds number range 600 to 2,700,000. Gaithersburg, MD: U.S. Dept. of Commerce, National Institute of Standards and Technology, 1989.
Znajdź pełny tekst źródłaD, Swain Eric, South Florida Water Management District (Fla.) i Geological Survey (U.S.), red. Determining discharge-coefficient ratings for coastal structures in Dade County, Florida. Tallahassee, Fla: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Znajdź pełny tekst źródłaD, Swain Eric, South Florida Water Management District. i Geological Survey (U.S.), red. Determining discharge-coefficient ratings for coastal structures in Dade County, Florida. Tallahassee, Fla: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Znajdź pełny tekst źródłaD, Swain Eric, South Florida Water Management District. i Geological Survey (U.S.), red. Determining discharge-coefficient ratings for coastal structures in Dade County, Florida. Tallahassee, Fla: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Znajdź pełny tekst źródłaD, Swain Eric, South Florida Water Management District (Fla.), South Florida Ecosystem Program (Geological Survey) i Geological Survey (U.S.), red. Determining discharge-coefficient ratings for coastal structures in Dade County, Florida. Tallahassee, Fla: U.S. Geological Survey, 1997.
Znajdź pełny tekst źródłaD, Swain Eric, South Florida Water Management District (Fla.) i Geological Survey (U.S.), red. Determining discharge-coefficient ratings for coastal structures in Dade County, Florida. Tallahassee, Fla: U.S. Dept. of the Interior, U.S. Geological Survey, 1997.
Znajdź pełny tekst źródłaTillis, Gina M. Determining discharge-coefficient ratings for selected coastal structures in Broward and Palm Beach Counties, Florida. Tallahassee, Fla. (227 N. Bronough St., Tallahassee 32301-1372): U.S. Dept. of the Interior, U.S. Geological Survey, 1998.
Znajdź pełny tekst źródłaCzęści książek na temat "COEFFICIENTS FOR DISCHARGE"
Rahimbakhsh, M., P. Werle, E. Gockenbach, T. Hinrichs, J. de Boer i M. Mostoofi. "Partial Discharge Monitoring via a Novel Curve Fitting Coefficients Method in Power Transformers". W Lecture Notes in Electrical Engineering, 1323–33. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31680-8_127.
Pełny tekst źródłaBremer, F., i M. Oertel. "Numerical investigation of wall thickness influence on Piano Key Weir discharge coefficients: A preliminary study". W Labyrinth and Piano Key Weirs III – PKW 2017, 101–8. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315169064-14.
Pełny tekst źródłaReader-Harris, Michael. "Orifice Discharge Coefficient". W Experimental Fluid Mechanics, 127–86. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16880-7_5.
Pełny tekst źródłaReader-Harris, Michael. "Nozzle Discharge Coefficient". W Experimental Fluid Mechanics, 281–304. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16880-7_9.
Pełny tekst źródłaMustafa, Mohammad Danish, Talib Mansoor i Mohammad Muzzammil. "Prediction of Discharge Coefficients for Trapezoidal Labyrinth Weir with Half-Round (HR) and Quarter-Round (QR) Crest". W Lecture Notes in Civil Engineering, 427–35. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-1890-4_33.
Pełny tekst źródłaReader-Harris, Michael. "Venturi Tube Discharge Coefficient in High-Pressure Gas". W Experimental Fluid Mechanics, 203–43. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-16880-7_7.
Pełny tekst źródłaAzizi, K., J. Attari i A. Moridi. "Estimation of discharge coefficient and optimization of Piano Key Weirs". W Labyrinth and Piano Key Weirs III – PKW 2017, 213–20. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315169064-30.
Pełny tekst źródłaYadav, Omprakash, Abhay Dahiya, Vinod Kumar Yadav i Rahul Sharma. "Experimental and Computational Investigation of Coefficient of Discharge of Venturimeter". W Lecture Notes in Mechanical Engineering, 57–72. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3428-4_6.
Pełny tekst źródłaKim, Jisung, Won Kim, Chanjoo Lee i Yong Jeon Kim. "Characteristic of Roughness Coefficient Associated with Discharge in Gravel-Bed River". W Advances in Water Resources and Hydraulic Engineering, 963–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89465-0_169.
Pełny tekst źródłaKarimi, M., J. Attari, M. Saneie i M. Jalili. "Experimental study of discharge coefficient of a Piano Key Side Weir". W Labyrinth and Piano Key Weirs III – PKW 2017, 109–16. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.1201/9781315169064-15.
Pełny tekst źródłaStreszczenia konferencji na temat "COEFFICIENTS FOR DISCHARGE"
Teich, T. H. "Measurement of fundamental discharge coefficients". W IEE Colloquium on Advances in HV Technology. IEE, 1996. http://dx.doi.org/10.1049/ic:19960996.
Pełny tekst źródłaAhmad, Rashid. "Discharge coefficients for axisymmetric supersonic nozzles". W 37th Aerospace Sciences Meeting and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1999. http://dx.doi.org/10.2514/6.1999-673.
Pełny tekst źródła"Discharge Coefficients of Flat Fan Nozzles". W 2016 ASABE International Meeting. American Society of Agricultural and Biological Engineers, 2016. http://dx.doi.org/10.13031/aim.20162460834.
Pełny tekst źródłaChu, Tay, A. Brown i S. Garrett. "Discharge Coefficients of Impingement and Film Cooling Holes". W ASME 1985 International Gas Turbine Conference and Exhibit. American Society of Mechanical Engineers, 1985. http://dx.doi.org/10.1115/85-gt-81.
Pełny tekst źródłaFuruichi, Noriyuki, Yoshiya Terao, Shinichi Nakao, Keiji Fujita i Kazuo Shibuya. "Further Investigation of Discharge Coefficient for PTC 6 Flow Nozzle in High Reynolds Number". W ASME 2015 Power Conference collocated with the ASME 2015 9th International Conference on Energy Sustainability, the ASME 2015 13th International Conference on Fuel Cell Science, Engineering and Technology, and the ASME 2015 Nuclear Forum. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/power2015-49174.
Pełny tekst źródłaGregg, Walter Boyd, David E. Werth i Carl Frizzell. "Determination of Discharge Coefficients for Hydraulic Sparger Design". W ASME 2003 Pressure Vessels and Piping Conference. ASMEDC, 2003. http://dx.doi.org/10.1115/pvp2003-2183.
Pełny tekst źródłaWinter, J., i A. J. Stevens. "The Coefficients of Discharge of Angled Chuted Holes". W ASME 1989 International Gas Turbine and Aeroengine Congress and Exposition. American Society of Mechanical Engineers, 1989. http://dx.doi.org/10.1115/89-gt-248.
Pełny tekst źródłaBlair, G. P., H. B. Lau, A. Cartwright, B. D. Raghunathan i D. O. Mackey. "Coefficients of Discharge at the Aperatures of Engines". W International Off-Highway & Powerplant Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/952138.
Pełny tekst źródłaNielsen, Kevin D., i Larry J. Weber. "Submergence Effects on Discharge Coefficients for Rectangular Orifices". W Joint Conference on Water Resource Engineering and Water Resources Planning and Management 2000. Reston, VA: American Society of Civil Engineers, 2000. http://dx.doi.org/10.1061/40517(2000)85.
Pełny tekst źródłaGanippa, Lionel Christopher, Sven Andersson i Jerzy Chomiak. "Transient Measurements of Discharge Coefficients of Diesel Nozzles". W International Fuels & Lubricants Meeting & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2000. http://dx.doi.org/10.4271/2000-01-2788.
Pełny tekst źródłaRaporty organizacyjne na temat "COEFFICIENTS FOR DISCHARGE"
Over, Thomas, Riki Saito, Andrea Veilleux, Padraic O’Shea, Jennifer Sharpe, David Soong i Audrey Ishii. Estimation of Peak Discharge Quantiles for Selected Annual Exceedance Probabilities in Northeastern Illinois. Illinois Center for Transportation, czerwiec 2016. http://dx.doi.org/10.36501/0197-9191/16-014.
Pełny tekst źródłaNored i James. PR-015-07603-R01 Effect of Orifice Plate Manufacturing Variations on Orifice Meter Performance - Blinded. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), październik 2013. http://dx.doi.org/10.55274/r0010636.
Pełny tekst źródłaNored i James. PR-015-07603-R02 Effect of Orifice Plate Manufacturing Variations on Orifice Meter Performance - Unblinded. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), październik 2013. http://dx.doi.org/10.55274/r0010829.
Pełny tekst źródłaCao, H., D. DiCicco i S. Suckewer. Quenching A-coefficients by photons in a short discharge tube. Office of Scientific and Technical Information (OSTI), październik 1992. http://dx.doi.org/10.2172/6970857.
Pełny tekst źródłaCao, H., D. DiCicco i S. Suckewer. Quenching A-coefficients by photons in a short discharge tube. Office of Scientific and Technical Information (OSTI), październik 1992. http://dx.doi.org/10.2172/10184533.
Pełny tekst źródłaWhetstone, James R. Measurements of coefficients of discharge for concentric flange-tapped square-edged orifice meters in water over the Reynolds number range 600 to 2,700,000. Gaithersburg, MD: National Bureau of Standards, 1989. http://dx.doi.org/10.6028/nist.tn.1264.
Pełny tekst źródłaWhetstone, James R. Measurements of coefficients of discharge for concentric flange-tapped square-edged orifice meters in natural gas over the Reynolds number range 25,000 to 16,000,000. Gaithersburg, MD: National Bureau of Standards, 1989. http://dx.doi.org/10.6028/nist.tn.1270.
Pełny tekst źródłaStrakey, P. A., i D. G. Talley. The Effect of Manifold Cross-Flow on the Discharge Coefficient Sharp-Edged Orifices. Fort Belvoir, VA: Defense Technical Information Center, marzec 1998. http://dx.doi.org/10.21236/ada409685.
Pełny tekst źródłaLangley, R. A., W. L. Rowan, R. V. Bravenec i K. Nelin. Measurement of the hydrogen recombination coefficient in the TEXT tokamak as a function of outgassing and power radiated during tokamak discharges. Office of Scientific and Technical Information (OSTI), październik 1986. http://dx.doi.org/10.2172/7056126.
Pełny tekst źródłaCao Romero, Julio A., Jorge Reyes-Avendaño, Julio Soriano, Leonardo Farfan-Cabrera i Ali Erdemir. A Pin-on-Disc Study on the Electrified Sliding Wear of EVs Powertrain Gears. SAE International, marzec 2022. http://dx.doi.org/10.4271/2022-01-0320.
Pełny tekst źródła