Gotowa bibliografia na temat „Coefficient de diffusion de l’exciton”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Coefficient de diffusion de l’exciton”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Artykuły w czasopismach na temat "Coefficient de diffusion de l’exciton"

1

Gordillo, Jorge A. "Effective Diffusion Coefficient". Defect and Diffusion Forum 384 (maj 2018): 130–35. http://dx.doi.org/10.4028/www.scientific.net/ddf.384.130.

Pełny tekst źródła
Streszczenie:
The diffusion of a B element into an A matrix was studied by the random walk theory. Considering that concentration of B element in the A matrix is very low, the jumps of diffusing atoms are independent of each other. The A matrix is a two-region material with different properties, such as a two-phase material, a single crystal with dislocations, or regions influenced by other solute and a polycrystalline material.It is assumed that material B has a penetration that allows it to cross each region of material A several times. This implies that jumps across the surface between those regions have an average frequency and, as a consequence, there is an interdiffusion coefficient between them. The interdiffusion coefficient between those regions is different than the coefficient of the diffusion in each region.Expressions were obtained that allow to delimit the ranges of validation with greater precision than the corrected Hart-Mortlock equation for solute diffusion. In addition, an original relationship was obtained between the segregation coefficient and parameters specific to the diffusion. New powerful tools were also found that can help to understand diffusion in nanocrystalline materials, diffusion in metals influenced by impurities and diffusion produced by different mechanisms.
Style APA, Harvard, Vancouver, ISO itp.
2

Rah, Kyunil, Sungjong Kwak, Byung Chan Eu i Michel Lafleur. "Relation of Tracer Diffusion Coefficient and Solvent Self-Diffusion Coefficient". Journal of Physical Chemistry A 106, nr 48 (grudzień 2002): 11841–45. http://dx.doi.org/10.1021/jp021659p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mauvy, F., J. M. Bassat, E. Boehm, P. Dordor, J. C. Grenier i J. P. Loup. "Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient". Journal of the European Ceramic Society 24, nr 6 (styczeń 2004): 1265–69. http://dx.doi.org/10.1016/s0955-2219(03)00500-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Neumann, Gerhard, i C. Tuijn. "Diffusion Mechanisms: The Vacancy Diffusion Coefficient". Solid State Phenomena 88 (listopad 2002): 19–20. http://dx.doi.org/10.4028/www.scientific.net/ssp.88.19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Graaff, R., i J. J. Ten Bosch. "Diffusion coefficient in photon diffusion theory". Optics Letters 25, nr 1 (1.01.2000): 43. http://dx.doi.org/10.1364/ol.25.000043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Costa, F. S., E. Capelas de Oliveira i Adrian R. G. Plata. "Fractional Diffusion with Time-Dependent Diffusion Coefficient". Reports on Mathematical Physics 87, nr 1 (luty 2021): 59–79. http://dx.doi.org/10.1016/s0034-4877(21)00011-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

ONISHI, Masami, Kenta KUWAYAMA, Toshitada SHIMOZAKI i Yoshinori WAKAMATSU. "Surface treatment by diffusion and diffusion coefficient." Journal of the Surface Finishing Society of Japan 41, nr 10 (1990): 1020–25. http://dx.doi.org/10.4139/sfj.41.1020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kuroiwa, Toshihiko, Tsukasa Nagaoka, Masato Ueki, Ichiro Yamada, Naoyuki Miyasaka i Hideaki Akimoto. "Different Apparent Diffusion Coefficient". Stroke 29, nr 4 (kwiecień 1998): 859–65. http://dx.doi.org/10.1161/01.str.29.4.859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Madden, Anthoula, i Martin O. Leach. "Radial diffusion coefficient mapping". British Journal of Radiology 65, nr 778 (październik 1992): 885–94. http://dx.doi.org/10.1259/0007-1285-65-778-885.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Vedalakshmi, R., V. Saraswathy, Ha-Won Song i N. Palaniswamy. "Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient". Corrosion Science 51, nr 6 (czerwiec 2009): 1299–307. http://dx.doi.org/10.1016/j.corsci.2009.03.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Rozprawy doktorskie na temat "Coefficient de diffusion de l’exciton"

1

Diarra, Cheick Oumar. "Modélisation par dynamique moléculaire ab initio du transport des excitons et du transport thermique dans les semiconducteurs organiques pour la collecte d'énergie". Electronic Thesis or Diss., Strasbourg, 2024. http://www.theses.fr/2024STRAD013.

Pełny tekst źródła
Streszczenie:
L'exciton joue un rôle clé dans le fonctionnement des cellules solaires organiques (OSCs). Comprendre sa dynamique dans les semiconducteurs organiques est essentiel, notamment pour améliorer la longueur de diffusion, une propriété déterminante pour la performance des hétérojonctions planaires, envisagées comme une alternative plus stable aux hétérojonctions en volume (BHJ). Dans la première partie de cette thèse, nous avons développé une approche méthodologique robuste et polyvalente pour évaluer la longueur de diffusion de l'exciton dans les semiconducteurs organiques. Cette approche, basée sur AIMD-ROKS, a été validée avec succès dans le cas du polymère P3HT. Elle a également été appliquée à l'accepteur NFA O-IDTBR, révélant des longueurs de diffusion prometteuses, mais encore insuffisantes pour les hétérojonctions planaires. Dans la deuxième partie de la thèse, le transfert de chaleur dans les semiconducteurs organiques a été exploré, élément crucial pour la performance des dispositifs thermoélectriques. Ces études se sont concentrées sur le P3HT, un matériau utilisé en thermoélectricité. Dans un premier temps, la conductivité thermique au sein des chaînes de P3HT a été étudiée, révélant l'influence de la longueur des chaînes de polymère. Ensuite, les transferts de chaleur entre ces chaînes ont également été examinés
The exciton plays a central role in the functioning of organic solar cells (OSCs). Understanding its dynamics in organic semiconductors is essential, particularly to optimize the diffusion length, a key property for the performance of planar heterojunctions, which are considered as a potentially more stable alternative to bulk heterojunctions (BHJ) in certain contexts. In the first part of this thesis, we developed a robust and versatile methodological approach to evaluate the exciton diffusion length in organic semiconductors. This method, based on AIMD-ROKS, was successfully validated for the P3HT polymer. It was also applied to the NFA O-IDTBR acceptor, revealing promising diffusion lengths, though still insufficient for planar heterojunctions. The second part of the thesis explores heat transfer in organic semiconductors, a crucial element for the performance of thermoelectric devices. These studies focused on P3HT, a material used in thermoelectricity. First, the thermal conductivity within P3HT chains was studied, revealing the influence of polymer chain length. Then, heat transfers between these chains were also examined
Style APA, Harvard, Vancouver, ISO itp.
2

Kosztolowicz, Tadeusz. "How to measure subdiffusion coefficient". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-196926.

Pełny tekst źródła
Streszczenie:
We propose a method to measure a subdiffusion coefficient Dα. The method, which exploits a membrane system, relies on the so-called near-membrane layers. We experimentally study the diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion equation with the initial and boundary conditions representing the system under study. Confronting the experimental data with theoretical results, we find the values of the subdiffusion coefficient for investigated substances.
Style APA, Harvard, Vancouver, ISO itp.
3

Kalnin, Juris Robert, Eugene A. Kotomin, Joachim Maier i Vladimir N. Kuzovkov. "Calculation of the effective diffusion coefficient for heterogeneous media: Calculation of the effective diffusion coefficient forheterogeneous media". Diffusion fundamentals 2 (2005) 21, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14351.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Sood, Eeshani. "Determination of diffusion coefficient for unsaturated soils". Texas A&M University, 2005. http://hdl.handle.net/1969.1/2318.

Pełny tekst źródła
Streszczenie:
The structures constructed on unsaturated soils are damaged by the movement of the soil underneath. The movement is basically due to the flow of moisture in and out of the soil. This change in moisture also affects the strength of the soil, thus resulting in failure of slopes of embankments constructed with these soils. Therefore, it is very important to study the diffusion properties of unsaturated soils. Study of the diffusion properties requires the determination of the diffusion coefficient (/). In this thesis improvements in the drying test, originally proposed by Mitchell (1979), have been discussed. The study also involves defining the evaporation coefficient (he) which has been ill-defined in previous research work. The flow through unsaturated soils is non-linear but due to the complexity involved it has been simplified to a linear problem. The nonlinear behavior has been studied during this research. Therefore, certain refinements have been applied in the determination of the diffusion coefficient. The laboratory procedure followed involves measuring the soil suction along the length of the sample and at different times using thermocouple psychrometers. The evaluation of the evaporation coefficient (he) has been made an integral part of the procedure. The diffusion coefficient is determined using the curve fitting procedure of Aubeny and Lytton, 2003.
Style APA, Harvard, Vancouver, ISO itp.
5

Chandler, I. D. "Vertical variation in diffusion coefficient within sediments". Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/49612/.

Pełny tekst źródła
Streszczenie:
River ecosystems can be strongly in uenced by contaminants in the water column, in the pore water and attached to sediment particles. Current models [TGD, 2003] predict exposure to sediments based on equilibrium partitioning between dissolved and suspended-particle-sorbed phase in the water column despite numerous studies showing significant direct mass transfer across the sediment water interface. When exchange across the interface (hyporheic exchange) is included in modelling the diffusion coefficient is assumed to be constant with depth. The overall aims of this research were to quantify the vertical variation in diffusion coefficient below the sediment water interface and asses the use of a modified EROSIMESS-System (erosimeter) in the study of hyporheic exchange. The modified erosimeter and novel fibre optic uorometers measuring in-bed concentrations Rhodamine WT were employed in an experimental investigation. Five different diameter glass sphere beds (0.15 to 5.0mm) and five bed shear velocities (0.01 to 0.04m/s) allowed the vertical variation in diffusion coefficient to be quantified to a depth of 0.134m below the sediment water interface. The vertical variation in diffusion coefficient can be described using an exponential function that was found to be consistent for all the parameter combinations tested. This function, combined with the scaling relationship proposed by O'Connor and Harvey [2008] allows a prediction of the diffusion coefficient below the sediment water interface based on bed shear velocity, roughness height and permeability. 1D numerical diffusion model simulations using the exponential function compare favourably with the experimental data.
Style APA, Harvard, Vancouver, ISO itp.
6

Itamunoala, G. F. "Effective diffusion coefficient in cell immobilization matrices". Thesis, University of Manchester, 1985. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.371905.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Hess, Clarion Hadleigh. "The Green's function for the diffusion coefficient". Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/114353.

Pełny tekst źródła
Streszczenie:
Thesis: S.B., Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, 2012.
Cataloged from PDF version of thesis.
Includes bibliographical references (pages 53-54).
The scattering diffusion coefficient between two points can theoretically be extracted from a random distribution of sources. An improved ability to measure the diffusion coefficient of the Earth's crust would simplify the process of characterizing the fracture network for applications in geothermal energy. This has the potential to make geothermal wells more economical to make, more efficient to operate, and longer lived. Previous work has shown the diffusion coefficient can be extracted from synthetic datasets in both one dimension and three dimensions using seismic interferometry. This paper attempts to recover the diffusion coefficient for a realistic source distribution taken from a microseismic dataset from a geothermal field in Indonesia. This dataset did not have an ideal distribution of sources, so the estimated diffusion coefficient did not match the expected value. A better estimate of the expected diffusion coefficient and an improved dataset with sources more evenly distributed in all directions around the receivers would likely give a better result.
by Clarion Hadleigh Hess.
S.B.
Style APA, Harvard, Vancouver, ISO itp.
8

Kosztolowicz, Tadeusz. "How to measure subdiffusion coefficient". Diffusion fundamentals 2 (2005) 123, S. 1-2, 2005. https://ul.qucosa.de/id/qucosa%3A14464.

Pełny tekst źródła
Streszczenie:
We propose a method to measure a subdiffusion coefficient Dα. The method, which exploits a membrane system, relies on the so-called near-membrane layers. We experimentally study the diffusion of glucose and sucrose in a gel solvent. We find a fully analytic solution of the fractional subdiffusion equation with the initial and boundary conditions representing the system under study. Confronting the experimental data with theoretical results, we find the values of the subdiffusion coefficient for investigated substances.
Style APA, Harvard, Vancouver, ISO itp.
9

Kalnins, Juris Roberts, Eugene A. Kotomin i Vladimir N. Kuzovkov. "Effective diffusion coefficient in one-dimensional heterogeneous solids". Universitätsbibliothek Leipzig, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-198322.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Keller, Steven Ede. "Flux-limited Diffusion Coefficient Applied to Reactor Analysis". Diss., Georgia Institute of Technology, 2007. http://hdl.handle.net/1853/16126.

Pełny tekst źródła
Streszczenie:
A new definition of the diffusion coefficient for use in reactor physics calculations is evaluated in this thesis. It is based on naturally flux-limited diffusion theory (FDT), sometimes referred to as Levermore-Pomraning diffusion theory. Another diffusion coefficient more loosely based on FDT is also evaluated in this thesis. Flux-limited diffusion theory adheres to the physical principle of flux-limiting, which is that the magnitude of neutron current is not allowed to exceed the scalar flux. Because the diffusion coefficients currently used in the nuclear industry are not flux-limited they may violate this principle in regions of large spatial gradients, and because they encompass other assumptions, they are only accurate when used in the types of calculations for which they were intended. The evaluations were performed using fine-mesh diffusion theory. They are in one spatial dimension and in 47, 4, and 2 energy groups, and were compared against a transport theory benchmark using equivalent energy structures and spatial discretization. The results show that the flux-limited diffusion coefficient (FD) outperforms the standard diffusion coefficient in calculations of single assemblies with vacuum boundaries, according to flux- and eigenvalue-errors. In single assemblies with reflective boundary conditions, the FD yielded smaller improvements, and tended to improve only the fast-group results. The results also computationally confirm that the FD adheres to flux-limiting, while the standard diffusion coefficient does not.
Style APA, Harvard, Vancouver, ISO itp.

Książki na temat "Coefficient de diffusion de l’exciton"

1

Stangeby, P. C. Measurements of the cross-field diffusion coefficient D (sub perpendicular) in the edge plasma of JET. [S.l.]: [s.n.], 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Forest Products Laboratory (U.S.), red. Diffusion coefficient of porous solid obtained from isothermal sorption tests. Madison, WI: U.S. Dept. of Agriculture, Forest Service, Forest Products Laboratory, 1994.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

A, Wakeham W., i Ho C. Y. 1928-, red. Transport properties of fluids: Thermal conductivity, viscosity, and diffusion coefficient. New York: Hemisphere Pub. Corp., 1988.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Roshanak, Hakimzadeh, i United States. National Aeronautics and Space Administration., red. Diffusion length damage coefficient and annealing studies in proton-irradiated InP. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Roshanak, Hakimzadeh, i United States. National Aeronautics and Space Administration., red. Diffusion length damage coefficient and annealing studies in proton-irradiated InP. [Washington, DC]: National Aeronautics and Space Administration, 1993.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Shukla, Bhagwan S. Diffusion coefficient and mixing depth through environmental radioactivity (models and applications). Hamilton, Ont: Environmental Research & Publications, 2010.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

George C. Marshall Space Flight Center., red. The temperature variation of hydrogen diffusion coefficients in metal alloys. [Marshall Space Flight Center, Ala.]: National Aeronautics and Space Administration, George C. Marshall Space Flight Center, 1990.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Center, NASA Glenn Research, red. Novel diffusivity measurement technique. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Wood, William A. Comments on the diffusive behavior of two upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Wood, William A. Comments on the diffusive behavior of two upwind schemes. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1998.

Znajdź pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Części książek na temat "Coefficient de diffusion de l’exciton"

1

Kruczek, Boguslaw. "Diffusion Coefficient". W Encyclopedia of Membranes, 544–47. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-44324-8_1993.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

Kruczek, Boguslaw. "Diffusion Coefficient". W Encyclopedia of Membranes, 1–4. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40872-4_1993-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Gutowski, J., K. Sebald i T. Voss. "ZnSe: diffusion coefficient". W New Data and Updates for III-V, II-VI and I-VII Compounds, 461. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_340.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Gutowski, J., K. Sebald i T. Voss. "ZnTe: diffusion coefficient". W New Data and Updates for III-V, II-VI and I-VII Compounds, 493. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_364.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Gooch, Jan W. "Diffusion Coefficient (D)". W Encyclopedic Dictionary of Polymers, 887. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_13561.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Pestov, S. "1.06 Diffusion coefficient". W Subvolume A, 1482. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/10694796_30.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Dagdug, Leonardo, Jason Peña i Ivan Pompa-García. "Trapping Rate Coefficient". W Diffusion Under Confinement, 457–88. Cham: Springer International Publishing, 2023. http://dx.doi.org/10.1007/978-3-031-46475-1_15.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Hönerlage, B. "CuI: ion diffusion coefficient". W New Data and Updates for III-V, II-VI and I-VII Compounds, 371. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-540-92140-0_274.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Meyer, B. K. "GaN, hexagonal modification: diffusion coefficient, diffusion length". W New Data and Updates for I-VII, III-V, III-VI and IV-VI Compounds, 259–60. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-48529-2_117.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Winkelmann, Jochen. "Self-diffusion coefficient of pyridazine". W Diffusion in Gases, Liquids and Electrolytes, 193. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. http://dx.doi.org/10.1007/978-3-540-73735-3_102.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Streszczenia konferencji na temat "Coefficient de diffusion de l’exciton"

1

Bhatt, Sunil, Himanshu Joshi, Ankit Butola, Krishna Agarwal i Dalip Singh Mehta. "Phase Correlation Spectroscopy: Microparticles Diffusion Coefficient Determination". W Digital Holography and Three-Dimensional Imaging, W4A.8. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/dh.2024.w4a.8.

Pełny tekst źródła
Streszczenie:
We propose the idea of phase correlation spectroscopy to investigate the dynamics of diffusion of microparticles in the vicinity of large detection volume utilizing the time-resolved measurements of fluctuations in the phase of the particle.
Style APA, Harvard, Vancouver, ISO itp.
2

Di Fonso, Roberta, Francesco Simonetti, Remus Teodorescu i Pallavi Bharadwaj. "A Fast Technique for Lithium-Ion Diffusion Coefficient Determination in Batteries". W 2024 International Symposium on Power Electronics, Electrical Drives, Automation and Motion (SPEEDAM), 656–60. IEEE, 2024. http://dx.doi.org/10.1109/speedam61530.2024.10609072.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Yamada, Yukio. "Diffusion coefficient in the photon diffusion equation". W Photonics West '95, redaktorzy Britton Chance i Robert R. Alfano. SPIE, 1995. http://dx.doi.org/10.1117/12.209955.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Forghan, Fariborz. "Discharge coefficient of diffusion holes". W Space Programs and Technologies Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1995. http://dx.doi.org/10.2514/6.1995-3622.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Andrade, C. "Concepts on the chloride diffusion coefficient". W Third International RILEM Workshop on Testing and Modelling Chloride Ingress into Concrete. RILEM Publications SARL, 2005. http://dx.doi.org/10.1617/2912143578.001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Gaal, G. C. M. "Ageing effect of chloride diffusion coefficient". W ConcreteLife'06 - International RILEM-JCI Seminar on Concrete Durability and Service Life Planning: Curing, Crack Control, Performance in Harsh Environments. RILEM Publications SARL, 2006. http://dx.doi.org/10.1617/291214390x.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Ruiz, X., J. Pallares i F. X. Grau. "On the space diffusion coefficient measurements". W 57th International Astronautical Congress. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2006. http://dx.doi.org/10.2514/6.iac-06-a2.2.01.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Carminati, R., R. Pierrat i J. J. Greffet. "Photon diffusion coefficient in absorbing random media". W Photonic Metamaterials: From Random to Periodic. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/meta.2006.thb2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Yaicharoen, Auapong, i Scott T. Acton. "Hybridized edge preservation coefficient for anisotropic diffusion". W Visual Communications and Image Processing '96, redaktorzy Rashid Ansari i Mark J. T. Smith. SPIE, 1996. http://dx.doi.org/10.1117/12.233302.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Leino, Viljami, Nora Brambilla, Julian Mayer-Steudte i Peter Petreczky. "Heavy quark diffusion coefficient with gradient flow". W The 39th International Symposium on Lattice Field Theory. Trieste, Italy: Sissa Medialab, 2023. http://dx.doi.org/10.22323/1.430.0183.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.

Raporty organizacyjne na temat "Coefficient de diffusion de l’exciton"

1

H. Liu, Q. Zhou i Y. Zhang. POTENTIAL SCALE DEPENDENCE OF EFFECTIVE MATRIX DIFFUSION COEFFICIENT. Office of Scientific and Technical Information (OSTI), marzec 2006. http://dx.doi.org/10.2172/886038.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
2

P. Heller and J. Wright. THE DETERMINATION OF DIFFUSION COEFFICIENT OF INVERT MATERIALS. Office of Scientific and Technical Information (OSTI), styczeń 2000. http://dx.doi.org/10.2172/889233.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Pital, Aaron, Keri Campbell i Daniel Kelly. Hydrogen Diffusion Coefficient Measures on Thin Film Uranium Oxide. Office of Scientific and Technical Information (OSTI), październik 2023. http://dx.doi.org/10.2172/2202591.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

MR (Diffusion-Weighted Imaging (DWI) of the Apparent Diffusion Coefficient (ADC), Clinically Feasible Profile. Chair Michael Boss, Dariya Malyarenko i Daniel Margolis. Radiological Society of North America (RSNA) / Quantitative Imaging Biomarkers Alliance (QIBA), grudzień 2022. http://dx.doi.org/10.1148/qiba/20221215.

Pełny tekst źródła
Streszczenie:
The goal of a QIBA Profile is to help achieve a useful level of performance for a given biomarker. The Claim (Section 2) describes the biomarker performance and is derived from the body of scientific literature meeting specific requirements, in particular test-retest studies. The Activities (Section 3) contribute to generating the biomarker. Requirements are placed on the Actors that participate in those activities as necessary to achieve the Claim. Assessment Procedures (Section 4) for evaluating specific requirements are defined as needed to ensure acceptable performance. Diffusion-Weighted Imaging (DWI) and the Apparent Diffusion Coefficient (ADC) are being used clinically as qualitative (DWI) and quantitative (ADC) indicators of disease presence, progression or response to treatment. Use of ADC as a robust quantitative biomarker with finite confidence intervals places additional requirements on Sites, Acquisition Devices and Protocols, Field Engineers, Scanner Operators (MR Technologists, Radiologists, Physicists and other Scientists), Image Analysts, Reconstruction Software and Image Analysis Tools. Additionally, due to the intrinsic dependence of measured ADC values on biophysical tissue properties, both the Profile Claims and the associated scan protocols (Section 3.6.2) are organ-specific. All of these are considered Actors involved in Activities of Acquisition Device Pre-delivery and Installation, Subject Handling, Image Data Acquisition, Reconstruction, Registration, ADC map generation, Quality Assurance (QA), Distribution, Analysis, and Interpretation. The requirements addressed in this Profile are focused on achieving ADC values with minimal systematic bias and measurement variability. DISCLAIMER: Technical performance of the MRI system can be assessed using a phantom having known diffusion properties, such as the QIBA DWI phantom. The clinical performance target is to achieve a 95% confidence interval for measurement of ADC with a variable precision depending on the organ being imaged and assuming adequate technical performance requirements are met. While in vivo DWI/ADC measurements have been performed throughout the human body, this Profile focused on four organ systems, namely brain, liver, prostate, and breast as having high clinical utilization of ADC with a sufficient level of statistical evidence to support the Profile Claims derived from the current peer-reviewed literature. In due time, new DWI technologies with proven greater performance levels, as well as more organ systems will be incorporated in future Profiles. This document is intended to help a variety of users: clinicians using this biomarker to aid patient management; imaging staff generating this biomarker; MRI system architects developing related products; purchasers of such products; and investigators designing clinical trials utilizing quantitative diffusion-based imaging endpoints. Note that this document only states requirements specific to DWI to achieve the claim, not requirements that pertain to clinical standard of care. Conforming to this Profile is secondary to proper patient care.
Style APA, Harvard, Vancouver, ISO itp.
5

Mayo, R. M., F. M. Levinton, D. D. Meyerhofer, T. K. Chu, S. F. Paul i M. Yamada. Local carbon diffusion coefficient measurement in the S-1 spheromak. Office of Scientific and Technical Information (OSTI), październik 1988. http://dx.doi.org/10.2172/6585289.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

H.H. Liu i Y. Zhang. Scale Dependence of Effective Matrix Diffusion Coefficient Evidence and Preliminary Interpertation. Office of Scientific and Technical Information (OSTI), czerwiec 2006. http://dx.doi.org/10.2172/893877.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

Meyerhofer, D. D., i F. M. Levinton. Measurement of the local particle diffusion coefficient in a magnetized plasma. Office of Scientific and Technical Information (OSTI), luty 1987. http://dx.doi.org/10.2172/6637207.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Q. Zhou, Hui-Hai Liu, F.J. Molz, Y. Zhang i G.S. Bodvarsson. FIELD-SCALE EFFECTIVE MATRIX DIFFUSION COEFFICIENT FOR FRACTURED ROCK:RESULTS FROM LITERATURE SURVEY. Office of Scientific and Technical Information (OSTI), kwiecień 2005. http://dx.doi.org/10.2172/859193.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Martínez-Vera, Carlos, Mario Vizcarra-Mendoza, Aislinn Ramos-Medina i Zaida Ortíz-Hernández. Estimation of potatoes moisture diffusion coefficient by means of a non-linear estimator. Peeref, październik 2022. http://dx.doi.org/10.54985/peeref.2210p1820431.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Y. Zhang, H. Liu, Q. Zhou i S. Finsterle. HOW DUAL-SCALE DIFFUSIVE PROPERTY HETEROGENEITY AFFECTS EFFECTIVE MATRIX DIFFUSION COEFFICIENT IN FRACTURED ROCK. Office of Scientific and Technical Information (OSTI), wrzesień 2005. http://dx.doi.org/10.2172/884925.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii