Kliknij ten link, aby zobaczyć inne rodzaje publikacji na ten temat: Coefficient de diffusion de l’exciton.

Artykuły w czasopismach na temat „Coefficient de diffusion de l’exciton”

Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych

Wybierz rodzaj źródła:

Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Coefficient de diffusion de l’exciton”.

Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.

Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.

Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.

1

Gordillo, Jorge A. "Effective Diffusion Coefficient". Defect and Diffusion Forum 384 (maj 2018): 130–35. http://dx.doi.org/10.4028/www.scientific.net/ddf.384.130.

Pełny tekst źródła
Streszczenie:
The diffusion of a B element into an A matrix was studied by the random walk theory. Considering that concentration of B element in the A matrix is very low, the jumps of diffusing atoms are independent of each other. The A matrix is a two-region material with different properties, such as a two-phase material, a single crystal with dislocations, or regions influenced by other solute and a polycrystalline material.It is assumed that material B has a penetration that allows it to cross each region of material A several times. This implies that jumps across the surface between those regions have an average frequency and, as a consequence, there is an interdiffusion coefficient between them. The interdiffusion coefficient between those regions is different than the coefficient of the diffusion in each region.Expressions were obtained that allow to delimit the ranges of validation with greater precision than the corrected Hart-Mortlock equation for solute diffusion. In addition, an original relationship was obtained between the segregation coefficient and parameters specific to the diffusion. New powerful tools were also found that can help to understand diffusion in nanocrystalline materials, diffusion in metals influenced by impurities and diffusion produced by different mechanisms.
Style APA, Harvard, Vancouver, ISO itp.
2

Rah, Kyunil, Sungjong Kwak, Byung Chan Eu i Michel Lafleur. "Relation of Tracer Diffusion Coefficient and Solvent Self-Diffusion Coefficient". Journal of Physical Chemistry A 106, nr 48 (grudzień 2002): 11841–45. http://dx.doi.org/10.1021/jp021659p.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
3

Mauvy, F., J. M. Bassat, E. Boehm, P. Dordor, J. C. Grenier i J. P. Loup. "Chemical oxygen diffusion coefficient measurement by conductivity relaxation—correlation between tracer diffusion coefficient and chemical diffusion coefficient". Journal of the European Ceramic Society 24, nr 6 (styczeń 2004): 1265–69. http://dx.doi.org/10.1016/s0955-2219(03)00500-4.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
4

Neumann, Gerhard, i C. Tuijn. "Diffusion Mechanisms: The Vacancy Diffusion Coefficient". Solid State Phenomena 88 (listopad 2002): 19–20. http://dx.doi.org/10.4028/www.scientific.net/ssp.88.19.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
5

Graaff, R., i J. J. Ten Bosch. "Diffusion coefficient in photon diffusion theory". Optics Letters 25, nr 1 (1.01.2000): 43. http://dx.doi.org/10.1364/ol.25.000043.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
6

Costa, F. S., E. Capelas de Oliveira i Adrian R. G. Plata. "Fractional Diffusion with Time-Dependent Diffusion Coefficient". Reports on Mathematical Physics 87, nr 1 (luty 2021): 59–79. http://dx.doi.org/10.1016/s0034-4877(21)00011-2.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
7

ONISHI, Masami, Kenta KUWAYAMA, Toshitada SHIMOZAKI i Yoshinori WAKAMATSU. "Surface treatment by diffusion and diffusion coefficient." Journal of the Surface Finishing Society of Japan 41, nr 10 (1990): 1020–25. http://dx.doi.org/10.4139/sfj.41.1020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
8

Kuroiwa, Toshihiko, Tsukasa Nagaoka, Masato Ueki, Ichiro Yamada, Naoyuki Miyasaka i Hideaki Akimoto. "Different Apparent Diffusion Coefficient". Stroke 29, nr 4 (kwiecień 1998): 859–65. http://dx.doi.org/10.1161/01.str.29.4.859.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
9

Madden, Anthoula, i Martin O. Leach. "Radial diffusion coefficient mapping". British Journal of Radiology 65, nr 778 (październik 1992): 885–94. http://dx.doi.org/10.1259/0007-1285-65-778-885.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
10

Vedalakshmi, R., V. Saraswathy, Ha-Won Song i N. Palaniswamy. "Determination of diffusion coefficient of chloride in concrete using Warburg diffusion coefficient". Corrosion Science 51, nr 6 (czerwiec 2009): 1299–307. http://dx.doi.org/10.1016/j.corsci.2009.03.017.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
11

Le Bihan, Denis, i Peter van Zijl. "From the diffusion coefficient to the diffusion tensor". NMR in Biomedicine 15, nr 7-8 (2002): 431–34. http://dx.doi.org/10.1002/nbm.798.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
12

Dohnal, Gejza. "On estimating the diffusion coefficient". Journal of Applied Probability 24, nr 1 (marzec 1987): 105–14. http://dx.doi.org/10.2307/3214063.

Pełny tekst źródła
Streszczenie:
Random processes of the diffusion type have the property that microscopic fluctuations of the trajectory make possible the identification of certain statistical parameters from one continuous observation. The paper deals with the construction of parameter estimates when observations are made at discrete but very dense time points.
Style APA, Harvard, Vancouver, ISO itp.
13

Breizman, B. N., i J. Weiland. "Calculation of quasilinear diffusion coefficient". European Journal of Physics 7, nr 4 (1.10.1986): 222–24. http://dx.doi.org/10.1088/0143-0807/7/4/002.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
14

Collet, P., i S. Martínez. "Diffusion coefficient in transient chaos". Nonlinearity 12, nr 3 (1.01.1999): 445–50. http://dx.doi.org/10.1088/0951-7715/12/3/001.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
15

Mastryukov, A. F. "Determination of the diffusion coefficient". Mathematical Models and Computer Simulations 7, nr 4 (lipiec 2015): 349–59. http://dx.doi.org/10.1134/s2070048215040067.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
16

M. Parti i I.. Dugmanics. "DIFFUSION COEFFICIENT FOR CORN DRYING". Transactions of the ASAE 33, nr 5 (1990): 1652. http://dx.doi.org/10.13031/2013.31523.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
17

al-Baldawi, N. F., i R. F. Abercrombie. "Cytoplasmic hydrogen ion diffusion coefficient". Biophysical Journal 61, nr 6 (czerwiec 1992): 1470–79. http://dx.doi.org/10.1016/s0006-3495(92)81953-7.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
18

Sharma, Raman, i K. Tankeshwar. "Model for Self-Diffusion Coefficient". Physics and Chemistry of Liquids 32, nr 4 (wrzesień 1996): 225–32. http://dx.doi.org/10.1080/00319109608030537.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
19

Dohnal, Gejza. "On estimating the diffusion coefficient". Journal of Applied Probability 24, nr 01 (marzec 1987): 105–14. http://dx.doi.org/10.1017/s0021900200030655.

Pełny tekst źródła
Streszczenie:
Random processes of the diffusion type have the property that microscopic fluctuations of the trajectory make possible the identification of certain statistical parameters from one continuous observation. The paper deals with the construction of parameter estimates when observations are made at discrete but very dense time points.
Style APA, Harvard, Vancouver, ISO itp.
20

Dévényi, A., J. Gadó, A. Keresztúri i M. Makai. "Diffusion Coefficient in Nonuniform Lattices". Nuclear Science and Engineering 92, nr 1 (styczeń 1986): 51–55. http://dx.doi.org/10.13182/nse86-a17864.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
21

Taduy, T., F. Millot i G. Dhalenne. "Chemical diffusion coefficient of CoO". Journal of Physics and Chemistry of Solids 53, nr 2 (luty 1992): 323–27. http://dx.doi.org/10.1016/0022-3697(92)90063-j.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
22

Marzocca, A. J., F. Povolo i G. H. Rubiolo. "Self-diffusion coefficient ofα-zirconium". Journal of Materials Science Letters 6, nr 4 (kwiecień 1987): 431–33. http://dx.doi.org/10.1007/bf01756787.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
23

Ferrando, R., R. Spadacini i G. E. Tommei. "Theory of diffusion in periodic systems: the diffusion coefficient". Surface Science 265, nr 1-3 (kwiecień 1992): 273–82. http://dx.doi.org/10.1016/0039-6028(92)90507-3.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
24

Pankratov, E. L. "Controlling the diffusion process via time-variable diffusion coefficient". Technical Physics 49, nr 1 (styczeń 2004): 114–18. http://dx.doi.org/10.1134/1.1642689.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
25

Escudero, J., J. Lázaro, E. Solórzano, Miguel A. Rodríguez-Pérez i Jose A. de Saja. "Gas Diffusion and Re-Diffusion in Polyethylene Foams". Defect and Diffusion Forum 283-286 (marzec 2009): 583–88. http://dx.doi.org/10.4028/www.scientific.net/ddf.283-286.583.

Pełny tekst źródła
Streszczenie:
In this work, the effective diffusion coefficient of the gas contained in closed cell polyethylene foams under static loading is measured. To do this, compressive creep experiments were performed on low density polyethylene foams produced under a gas diffusion process. Density dependence of this coefficient has been analysed as well as the variation of pressure with time inside the cells. Finally, immediately after compressive creep, the recovery behaviour of the foams was also characterised. Different abilities for recovering were observed depending on the density of the foam and the absolute recovery resulted independent of the initial stress applied.
Style APA, Harvard, Vancouver, ISO itp.
26

Doai, Mariko, Hisao Tonami, Munetaka Matoba, Osamu Tachibana, Hideaki Iizuka, Satoko Nakada i Sohuske Yamada. "Pituitary macroadenoma: Accuracy of apparent diffusion coefficient magnetic resonance imaging in grading tumor aggressiveness". Neuroradiology Journal 32, nr 2 (16.01.2019): 86–91. http://dx.doi.org/10.1177/1971400919825696.

Pełny tekst źródła
Streszczenie:
Purpose The purpose of this study is to evaluate the accuracy of apparent diffusion coefficient magnetic resonance imaging in grading tumor aggressiveness using histogram apparent diffusion coefficient values. Materials and methods Eighteen patients with surgically proved pituitary macroadenomas were included in this study. Diffusion-weighted imaging with single-shot echo-planar sequence at 3-T with a 32-channel head coil was performed with b values of 0 and 1000 s/mm2. Calculated apparent diffusion coefficient maps were generated, and a 3-D volume of interest was placed on the tumor while superimposing contrast-enhanced magnetic resonance images. All apparent diffusion coefficient values within the volume of interest were used to compute the average apparent diffusion coefficient of the tumor. The apparent diffusion coefficient values were binned to construct the apparent diffusion coefficient histogram. Using the histogram, the mean, percentiles, skewness, and kurtosis of the apparent diffusion coefficient of the entire tumor were computed. Apparent diffusion coefficient histogram parameters were compared with the MIB-1 index, invasiveness, and recurrence for grading tumor aggressiveness of pituitary adenomas. Results The skewness of the apparent diffusion coefficient histogram only showed significant differences among MIB-1 indices ( p = 0.030). All apparent diffusion coefficient histogram parameters showed no significant differences between negative and positive invasion. The skewness and kurtosis of the apparent diffusion coefficient histogram showed significant differences between positive and negative recurrence (skewness p = 0.011, kurtosis p = 0.011). Receiver-operating characteristics analysis between positive and negative recurrence showed that both skewness and kurtosis of the apparent diffusion coefficient achieved area under the curve at 0.967. Conclusion Skewness and kurtosis of the apparent diffusion coefficient histogram were the predictive parameters for assessing tumor proliferative potential and recurrence of pituitary adenomas.
Style APA, Harvard, Vancouver, ISO itp.
27

Omura, Yasuhisa. "Theoretical Assessment of Impacts of Energy Band Valley Occupation on Diffusion Coefficient of Nano-Scale Ge Wires". ECS Journal of Solid State Science and Technology 11, nr 3 (1.03.2022): 033005. http://dx.doi.org/10.1149/2162-8777/ac557a.

Pełny tekst źródła
Streszczenie:
The purpose of this paper is to theoretically predict the significant impacts of valley occupation on the overall diffusion coefficient of Ge nanowires physically confined by various surfaces. This paper derives an approximate analytical expression of the diffusion coefficient that exists around room temperature. In Ge wires physically confined by {100} surfaces, the overall diffusion coefficient is, around room temperature, almost constant for wire widths larger than 10 nm. However, a step-like decrease is found for wire widths smaller than 7 nm. This behavior of the overall diffusion coefficient stems from the fall in the L-valley component of diffusion coefficient and the rise of X-valley component of diffusion coefficient for wire widths smaller than 10 nm. The behavior of diffusion coefficient of wires physically confined by {111} surfaces is also investigated around room temperature. The overall diffusion coefficient is almost the same as the diffusion coefficient component of X valley because electrons primarily occupy X valleys. It is clearly revealed that the behavior of the diffusion coefficient is primarily ruled by the valley occupation fraction of electrons in Ge wires. These dominant features of the diffusion coefficient of Ge wires are quite different from those of Si wires. Simulation results are assessed in comparisons with past experimental results and past calculation results. Finally, additional consideration is given from the viewpoint of device applications.
Style APA, Harvard, Vancouver, ISO itp.
28

Wei, T., i Y. S. Li. "Identifying a diffusion coefficient in a time-fractional diffusion equation". Mathematics and Computers in Simulation 151 (wrzesień 2018): 77–95. http://dx.doi.org/10.1016/j.matcom.2018.03.006.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
29

Aguilar-Madera, Carlos G., Gilberto Espinosa-Paredes i Lázaro Molina-Espinosa. "Time-dependent neutron diffusion coefficient for the effective diffusion equation". Progress in Nuclear Energy 112 (kwiecień 2019): 20–33. http://dx.doi.org/10.1016/j.pnucene.2018.12.003.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
30

Bonati, L. H., P. A. Lyrer, S. G. Wetzel, A. J. Steck i S. T. Engelter. "Diffusion weighted imaging, apparent diffusion coefficient maps and stroke etiology". Journal of Neurology 252, nr 11 (17.06.2005): 1387–93. http://dx.doi.org/10.1007/s00415-005-0881-1.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
31

Mohamed, S. A., N. A. Mohamed, A. F. Abdel Gawad i M. S. Matbuly. "A modified diffusion coefficient technique for the convection diffusion equation". Applied Mathematics and Computation 219, nr 17 (maj 2013): 9317–30. http://dx.doi.org/10.1016/j.amc.2013.03.014.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
32

Jardin, S. C., G. Bateman, G. W. Hammett i L. P. Ku. "On 1D diffusion problems with a gradient-dependent diffusion coefficient". Journal of Computational Physics 227, nr 20 (październik 2008): 8769–75. http://dx.doi.org/10.1016/j.jcp.2008.06.032.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
33

Shinkai, Soya, i Yuichi Togashi. "Quantitative Theory of Active Diffusion Trajectories by Instantaneous Diffusion Coefficient". Biophysical Journal 108, nr 2 (styczeń 2015): 471a—472a. http://dx.doi.org/10.1016/j.bpj.2014.11.2578.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
34

Pankratov, E. L. "Dopant diffusion dynamics and optimal diffusion time as influenced by diffusion-coefficient nonuniformity". Russian Microelectronics 36, nr 1 (luty 2007): 33–39. http://dx.doi.org/10.1134/s1063739707010040.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
35

WANG GANG, YANG GUO-QUAN, GUAN DI-HUA, JIANG LI, PA SI-KUA-LI-MAO-LUO, PI SI TUO YAN-ZHAN FO LAN KE i JIE SI-SHENG. "DIFFUSION COEFFICIENT MEASURED BY IMPEDANCE SPECTROSCOPY". Acta Physica Sinica 44, nr 12 (1995): 1964. http://dx.doi.org/10.7498/aps.44.1964.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
36

Levchenko, A. M., Y. Aldaiye i V. A. Karkhin. "Hydrogen diffusion coefficient in welded steels". Welding and Diagnostics, nr 6 (2021): 20–27. http://dx.doi.org/10.52177/2071-5234_2021_06_20.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
37

Liu, Xian Xi, Jun Ruo Che i Sai Zhang. "Drying Model and Moisture Diffusion Coefficient". Advanced Materials Research 472-475 (luty 2012): 519–25. http://dx.doi.org/10.4028/www.scientific.net/amr.472-475.519.

Pełny tekst źródła
Streszczenie:
Varied values of moisture diffusivity estimated using Crank’s equation with different initial moisture content, equilibrium moisture content and sample thickness are often reported. However, a theoretical explanation to this phenomenon is not available to date. To explore the possible reason of this phenomenon, a Fick’s second law diffusion equation for drying samples assumed uniform initial moisture distribution and negligible external resistance is solved numerically and the solutions as drying data is used to estimate the moisture diffusion coefficient of the sample through the equation reported by Crank. The result shows the Crank’s equation used to estimate moisture diffusion coefficient could not be theoretical solution of the Fick’s second law diffusion equation and the estimated value of moisture diffusion changing with initial moisture content, equilibrium moisture content and sample thickness perhaps caused by the Crank’s equation itself.
Style APA, Harvard, Vancouver, ISO itp.
38

Furman, I. E. "Self-diffusion coefficient of liquid rubidium". Advanced Studies in Theoretical Physics 8 (2014): 653–54. http://dx.doi.org/10.12988/astp.2014.4556.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
39

Zlygostev, S. N. "Self-diffusion coefficient of liquid lithium". Advanced Studies in Theoretical Physics 8 (2014): 679–80. http://dx.doi.org/10.12988/astp.2014.4562.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
40

Mironova, T., i A. Kraiski. "Determination of Diffusion Coefficient in Hydrogel". KnE Energy 3, nr 3 (25.04.2018): 429. http://dx.doi.org/10.18502/ken.v3i3.2057.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
41

Will, Fritz G. "Diffusion Coefficient of Dopants in Polyacetylene". Journal of The Electrochemical Society 132, nr 3 (1.03.1985): 743–44. http://dx.doi.org/10.1149/1.2113949.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
42

Durian, D. J. "The diffusion coefficient depends on absorption". Optics Letters 23, nr 19 (1.10.1998): 1502. http://dx.doi.org/10.1364/ol.23.001502.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
43

Hara, Hiroaki. "Anomalous temperature dependence of diffusion coefficient". Physical Review B 31, nr 7 (1.04.1985): 4612–16. http://dx.doi.org/10.1103/physrevb.31.4612.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
44

OHMORI, Takao, i Mitsutaka KAWAMURA. "Collective diffusion coefficient in polyacrylamide gels." KOBUNSHI RONBUNSHU 46, nr 10 (1989): 639–41. http://dx.doi.org/10.1295/koron.46.639.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
45

Godoy, Salvador. "Landauer diffusion coefficient: A classical result". Physical Review E 56, nr 4 (1.10.1997): 4884–86. http://dx.doi.org/10.1103/physreve.56.4884.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
46

Culbertson, C. "Diffusion coefficient measurements in microfluidic devices". Talanta 56, nr 2 (11.02.2002): 365–73. http://dx.doi.org/10.1016/s0039-9140(01)00602-6.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
47

Rafsanjani, Hossein Khodabakhshi, Mohammad Hossein Sedaaghi i Saeid Saryazdi. "Efficient diffusion coefficient for image denoising". Computers & Mathematics with Applications 72, nr 4 (sierpień 2016): 893–903. http://dx.doi.org/10.1016/j.camwa.2016.06.005.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
48

Al-Baldawi, N. "Calcium diffusion coefficient in Myxicola axoplasm". Cell Calcium 17, nr 6 (czerwiec 1995): 422–30. http://dx.doi.org/10.1016/0143-4160(95)90088-8.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
49

Colbeck, S. C. "The vapor diffusion coefficient for snow". Water Resources Research 29, nr 1 (styczeń 1993): 109–15. http://dx.doi.org/10.1029/92wr02301.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
50

Ghosh, U. K., S. Kumar i S. N. Upadhyay. "Diffusion coefficient in aqueous polymer solutions". Journal of Chemical & Engineering Data 36, nr 4 (październik 1991): 413–17. http://dx.doi.org/10.1021/je00004a020.

Pełny tekst źródła
Style APA, Harvard, Vancouver, ISO itp.
Oferujemy zniżki na wszystkie plany premium dla autorów, których prace zostały uwzględnione w tematycznych zestawieniach literatury. Skontaktuj się z nami, aby uzyskać unikalny kod promocyjny!

Do bibliografii