Artykuły w czasopismach na temat „Co3O4 Morphology”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Co3O4 Morphology”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhang, Ruili, Yuntao Yang i Ping Yang. "Three-Dimensional Precursor-Derived Synthesis of Co3O4 Towards High Electrochemical Performance". Nanoscience and Nanotechnology Letters 11, nr 10 (1.10.2019): 1375–86. http://dx.doi.org/10.1166/nnl.2019.3024.
Pełny tekst źródłaTan, Hui Yun, i Zhao Yu Ren. "Facile Synthesis of Co3O4/Nitrogen-Doped Graphene Composite with Enhanced Electrochemical Performance". Materials Science Forum 847 (marzec 2016): 14–21. http://dx.doi.org/10.4028/www.scientific.net/msf.847.14.
Pełny tekst źródłaLi, Zhengsheng, Ruitang Guo, Zhidong Lin, Xiangyin Ji, Ye Yuan, Longfei Hong i Weiguo Pan. "Facile synthesis of Co3O4 nanoparticles with different morphology for efficient water oxidation in alkaline media". Journal of Physics: Conference Series 2263, nr 1 (1.04.2022): 012013. http://dx.doi.org/10.1088/1742-6596/2263/1/012013.
Pełny tekst źródłaKong, Linglong, Lu Wang, Deye Sun, Su Meng, Dandan Xu, Zaixin He, Xiaoying Dong, Yongfeng Li i Yongcheng Jin. "Aggregation-Morphology-Dependent Electrochemical Performance of Co3O4 Anode Materials for Lithium-Ion Batteries". Molecules 24, nr 17 (29.08.2019): 3149. http://dx.doi.org/10.3390/molecules24173149.
Pełny tekst źródłaZia, Adeel, Abdul Basit Naveed, Aftab Javaid, Muhammad Fahad Ehsan i Azhar Mahmood. "Facile Synthesis of ZnSe/Co3O4 Heterostructure Nanocomposites for the Photocatalytic Degradation of Congo Red Dye". Catalysts 12, nr 10 (7.10.2022): 1184. http://dx.doi.org/10.3390/catal12101184.
Pełny tekst źródłaYulizar, Yoki, Dewangga Oky Bagus Apriandanu i Yessi Pratiwi. "Formation of Co3O4 Nanoparticles Using Moringa oleifera Leaves Extract through Two Phases System of Hexane-Water and their Photocatalytic Activity". Materials Science Forum 982 (marzec 2020): 9–13. http://dx.doi.org/10.4028/www.scientific.net/msf.982.9.
Pełny tekst źródłaWang, Chao, Wenchao Hua, Guangtao Chai, Chuanhui Zhang i Yanglong Guo. "Insights into the Morphological Effect of Co3O4 Crystallite on Catalytic Oxidation of Vinyl Chloride". Catalysts 9, nr 5 (30.04.2019): 408. http://dx.doi.org/10.3390/catal9050408.
Pełny tekst źródłaАбдуллин, Х. А., С. К. Жумагулов, Г. А. Исмаилова, Ж. К. Калкозова, В. В. Кудряшов i А. С. Серикканов. "Синтез гетерогенных наноструктур ZnO/Co-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=- методом химического осаждения из растворов". Журнал технической физики 90, nr 7 (2020): 1184. http://dx.doi.org/10.21883/jtf.2020.07.49454.317-19.
Pełny tekst źródłaWei, Xuejiao, Sami Barkaoui, Jingwen Chen, Guiping Cao, Zeying Wu, Fei Wang i Gao Li. "Investigation of Au/Co3O4 nanocomposites in glycol oxidation by tailoring Co3O4 morphology". Nanoscale Advances 3, nr 6 (2021): 1741–46. http://dx.doi.org/10.1039/d1na00053e.
Pełny tekst źródłaKumar, Yedluri Anil, Himadri Tanaya Das, Phaneendra Reddy Guddeti, Ramesh Reddy Nallapureddy, Mohan Reddy Pallavolu, Salem Alzahmi i Ihab M. Obaidat. "Self-Supported Co3O4@Mo-Co3O4 Needle-like Nanosheet Heterostructured Architectures of Battery-Type Electrodes for High-Performance Asymmetric Supercapacitors". Nanomaterials 12, nr 14 (7.07.2022): 2330. http://dx.doi.org/10.3390/nano12142330.
Pełny tekst źródłaGholamrezaei, Sousan, Masoud Salavati-Niasari, Hassan Hadadzadeh i Mohammad Taghi Behnamfar. "Preparation of Co3O4 Nanostructures via a Hydrothermal- Assisted Thermal Treatment Method by Using of New Precursors". High Temperature Materials and Processes 36, nr 2 (1.02.2017): 107–12. http://dx.doi.org/10.1515/htmp-2015-0158.
Pełny tekst źródłaPang, Wei Qiang, Xiao Bing Shi i Yang Li. "Preparation, Characterization of Co3O4 Nano-Particles and its Catalytic Effect on the Combustion of Fuel Rich Propellants". Advanced Materials Research 560-561 (sierpień 2012): 284–88. http://dx.doi.org/10.4028/www.scientific.net/amr.560-561.284.
Pełny tekst źródłaWang, Jian, Yan Zhao, Yucai Li i Shiwei Song. "Morphology and Structure Induced Co3O4 Nanowires High-Performance Supercapacitor Electrode Material". Journal of Nanoelectronics and Optoelectronics 16, nr 6 (1.06.2021): 1005–10. http://dx.doi.org/10.1166/jno.2021.3044.
Pełny tekst źródłaAdimule, Vinayak, Basappa C. Yallur, Sheetal R. Batakurki i Santosh S. Nandi. "Synthesis, Morphology and Enhanced Optical Properties of Novel GdxCo<sub>3</sub>O<sub>4</sub> Nanostructures". Advanced Materials Research 1173 (25.08.2022): 71–82. http://dx.doi.org/10.4028/p-3pkhf6.
Pełny tekst źródłaChang, Abdul Sattar, Aneela Tahira, Fouzia Chang, Abdul Ghaffar Solangi, Muhammad Ali Bhatti, Brigitte Vigolo, Ayman Nafady i Zafar Hussain Ibupoto. "Highly Heterogeneous Morphology of Cobalt Oxide Nanostructures for the Development of Sensitive and Selective Ascorbic Acid Non-Enzymatic Sensor". Biosensors 13, nr 1 (16.01.2023): 147. http://dx.doi.org/10.3390/bios13010147.
Pełny tekst źródłaSerga, Vera, Aija Krūmiņa, Mara Lubane, Gundega Heidemane i Mikhail Maiorov. "Production of Nano-Sized Co3O4 by Pyrolysis of Organic Extracts". Key Engineering Materials 721 (grudzień 2016): 102–7. http://dx.doi.org/10.4028/www.scientific.net/kem.721.102.
Pełny tekst źródłaShaikh, Zaffar Ahmed, Nikita Moiseev, Alexey Mikhaylov i Serhat Yüksel. "Facile Synthesis of Copper Oxide-Cobalt Oxide/Nitrogen-Doped Carbon (Cu2O-Co3O4/CN) Composite for Efficient Water Splitting". Applied Sciences 11, nr 21 (25.10.2021): 9974. http://dx.doi.org/10.3390/app11219974.
Pełny tekst źródłaXu, Yang, Ji Chun Huang, Lin Cheng, Dian Xue Cao i Gui Ling Wang. "Ag Doped Co3O4 Nanowire Arrays as an Electrode Material for Electrochemical Capacitors". Applied Mechanics and Materials 268-270 (grudzień 2012): 157–63. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.157.
Pełny tekst źródłaGuo, Yi-Xuan, Chia-Hung Huang, Yasser Ashraf Gandomi, Chien-Te Hsieh i Wei-Ren Liu. "Synthesis and Electrochemical Properties of Co3O4@Reduced Graphene Oxides Derived from MOF as Anodes for Lithium-Ion Battery Applications". Sustainability 15, nr 6 (10.03.2023): 4988. http://dx.doi.org/10.3390/su15064988.
Pełny tekst źródłaYurchenko, Olena, Hans-Fridtjof Pernau, Laura Engel, Benedikt Bierer, Martin Jägle i Jürgen Wöllenstein. "Impact of particle size and morphology of cobalt oxide on the thermal response to methane examined by thermal analysis". Journal of Sensors and Sensor Systems 10, nr 1 (24.02.2021): 37–42. http://dx.doi.org/10.5194/jsss-10-37-2021.
Pełny tekst źródłaFan, Xiao, Per Ohlckers i Xuyuan Chen. "Tunable Synthesis of Hollow Co3O4 Nanoboxes and Their Application in Supercapacitors". Applied Sciences 10, nr 4 (11.02.2020): 1208. http://dx.doi.org/10.3390/app10041208.
Pełny tekst źródłaWANG, YAN, JING HUANG, JIANLIANG CAO, GAOJIE LI i ZHANYING ZHANG. "COBALT OXIDE DECORATED FLOWER-LIKE g-C3N4 HYBRID NANOMATERIALS FOR CARBON MONOXIDE OXIDATION". Surface Review and Letters 24, nr 05 (30.09.2016): 1750058. http://dx.doi.org/10.1142/s0218625x17500585.
Pełny tekst źródłaMakhlouf, M. Th, B. M. Abu-Zied i T. H. Mansoure. "Direct Fabrication of Cobalt Oxide Nanoparticles Employing Sucrose as a Combustion Fuel". Journal of Nanoparticles 2013 (6.03.2013): 1–7. http://dx.doi.org/10.1155/2013/384350.
Pełny tekst źródłaRatchagar, V., M. Muralidharan, M. Silambarasan, K. Jagannathan, P. Kamaraj, Suresh Kumar Subbiah, P. A. Vivekanand i in. "Coprecipitation Methodology Synthesis of Cobalt-Oxide Nanomaterials Influenced by pH Conditions: Opportunities in Optoelectronic Applications". International Journal of Photoenergy 2023 (11.07.2023): 1–9. http://dx.doi.org/10.1155/2023/2493231.
Pełny tekst źródłaShaheen, A., Shahid Hussain, G. J. Qiao, Mohamed H. Mahmoud, Hassan Fouad i M. S. Akhtar. "Nanosheets Assembled Co3O4 Nanoflowers for Supercapacitor Applications". Journal of Nanoelectronics and Optoelectronics 16, nr 9 (1.09.2021): 1357–62. http://dx.doi.org/10.1166/jno.2021.3113.
Pełny tekst źródłaLykaki, Maria, Eleni Papista, Nikolaos Kaklidis, Sόnia Carabineiro i Michalis Konsolakis. "Ceria Nanoparticles’ Morphological Effects on the N2O Decomposition Performance of Co3O4/CeO2 Mixed Oxides". Catalysts 9, nr 3 (3.03.2019): 233. http://dx.doi.org/10.3390/catal9030233.
Pełny tekst źródłaLyu, Xuemeng, Olena Yurchenko, Patrick Diehle, Frank Altmann, Jürgen Wöllenstein i Katrin Schmitt. "Accelerated Deactivation of Mesoporous Co3O4-Supported Au–Pd Catalyst through Gas Sensor Operation". Chemosensors 11, nr 5 (2.05.2023): 271. http://dx.doi.org/10.3390/chemosensors11050271.
Pełny tekst źródłaDmitriev, A. V., E. V. Vladimirova, A. P. Esaulkov, V. D. Zhuravlev, M. V. Kuznetsov i S. A. Uporov. "Morphology and Magnetic Properties of Hollow Co3O4 Spheres". Physics of the Solid State 62, nr 12 (grudzień 2020): 2332–39. http://dx.doi.org/10.1134/s1063783420120082.
Pełny tekst źródłaKhasu, Motlokoa, Thulani Nyathi, David J. Morgan, Graham J. Hutchings, Michael Claeys i Nico Fischer. "Co3O4 morphology in the preferential oxidation of CO". Catal. Sci. Technol. 7, nr 20 (2017): 4806–17. http://dx.doi.org/10.1039/c7cy01194f.
Pełny tekst źródłaHu, Hanmei, Junchan Xu, Weifei Wu, Dongdong Liu, Lili Zhang i Zhengxiang Hou. "Morphology Control of CoC2O4•4H2O and Co3O4 Microspheres". Asian Journal of Chemistry 25, nr 10 (2013): 5513–15. http://dx.doi.org/10.14233/ajchem.2013.oh4.
Pełny tekst źródłaWang, Yangang, Yanqin Wang, Jiawen Ren, Yan Mi, Fengyuan Zhang, Changlin Li, Xiaohui Liu, Yun Guo, Yanglong Guo i Guanzhong Lu. "Synthesis of morphology-controllable mesoporous Co3O4 and CeO2". Journal of Solid State Chemistry 183, nr 2 (luty 2010): 277–84. http://dx.doi.org/10.1016/j.jssc.2009.11.009.
Pełny tekst źródłaIqbal, Javed, Arshid Numan, Mohammad Omaish Ansari, Rashida Jafer, Priyanka R. Jagadish, Shahid Bashir, P. M. Z. Hasan i in. "Cobalt Oxide Nanograins and Silver Nanoparticles Decorated Fibrous Polyaniline Nanocomposite as Battery-Type Electrode for High Performance Supercapattery". Polymers 12, nr 12 (27.11.2020): 2816. http://dx.doi.org/10.3390/polym12122816.
Pełny tekst źródłaGuragain, D., C. Zequine, T. Poudel, D. Neupane, R. K. Gupta i S. R. Mishra. "Facile Synthesis of Bio-Templated Tubular Co3O4 Microstructure and Its Electrochemical Performance in Aqueous Electrolytes". Journal of Nanoscience and Nanotechnology 20, nr 5 (1.05.2020): 3182–94. http://dx.doi.org/10.1166/jnn.2020.17414.
Pełny tekst źródłaBuizon, Lance Patrick M., i Menandro C. Marquez. "Supercapacitive Performance of Electrochemically Synthesized Samarium Cobalt Oxide Nanosheets and Nanoflowers". Materials Science Forum 1053 (17.02.2022): 125–30. http://dx.doi.org/10.4028/p-v6063a.
Pełny tekst źródłaZhao, Yan, Yucai Li, Dong Zhang, Shiwei Song, Jian Wang, Yunjie Ke, Rui Guo, Yanbo Ding i Xiandong Zhu. "Effect of Reaction Time on the Performance of Co3O4 Electrode Materials for High Performance Supercapacitors". Journal of Nanoelectronics and Optoelectronics 15, nr 12 (1.12.2020): 1429–35. http://dx.doi.org/10.1166/jno.2020.2883.
Pełny tekst źródłaCustodio, Cyron L., John Lemuel G. Untalasco i Menandro C. Marquez. "Preparation of Cuprous Oxide/Cobaltous Oxide Nanostructured Composite with the Aid of Polyethylene Glycol and Ultrasonic Sound". Materials Science Forum 916 (marzec 2018): 50–54. http://dx.doi.org/10.4028/www.scientific.net/msf.916.50.
Pełny tekst źródłaUntalasco, John Lemuel G., Abdul Rahman Mariscal i Menandro C. Marquez. "Morphology Induced Effect on the Electrochemical Activity of Cobaltous Oxide Nanostructures in Potassium Hydroxide and Phosphoric Acid Media". Materials Science Forum 916 (marzec 2018): 96–100. http://dx.doi.org/10.4028/www.scientific.net/msf.916.96.
Pełny tekst źródłaBOUREGUIG, K. M. E., H. TABET-DERRAZ, T. SEDDIK i M. A. BENALI. "SYNTHESIS AND CHARACTERIZATION OF (ZNO)–(CO3O4) NANOCOMPOSITE VIA SPRAY PYROLYSIS PROCESS: THE USE OF THE BRUGGEMAN MODEL ON OPTICAL PROPERTIES PREVISION". Surface Review and Letters 28, nr 07 (26.04.2021): 2150066. http://dx.doi.org/10.1142/s0218625x21500669.
Pełny tekst źródłaMa, Maixia, Lei Wei i Fang Jin. "Porous Co3O4 nanoplatelets as efficient catalyst precursor for hydrogen generation from the hydrolysis of alkaline sodium borohydride solution". Functional Materials Letters 12, nr 01 (21.01.2019): 1850109. http://dx.doi.org/10.1142/s1793604718501096.
Pełny tekst źródłaLuo, Jiankang, Jun Wu, Zheng Liu, Zenghe Li i Li Deng. "Controlled Synthesis of Porous Co3O4 Nanostructures for Efficient Electrochemical Sensing of Glucose". Journal of Nanomaterials 2019 (16.09.2019): 1–7. http://dx.doi.org/10.1155/2019/8346251.
Pełny tekst źródłaLiu, Huili, Xinglong Gou, Yi Wang, Xuan Du, Can Quan i Tao Qi. "Cauliflower-Like Co3O4/Three-Dimensional Graphene Composite for High Performance Supercapacitor Applications". Journal of Nanomaterials 2015 (2015): 1–9. http://dx.doi.org/10.1155/2015/874245.
Pełny tekst źródłaYang, Caiqin, Weiwei Li, Xiaowei Liu, Xiumei Song, Hongpeng Li i Lichao Tan. "Preparation of MoFs-Derived Cobalt Oxide/Carbon Nanotubes Composites for High-Performance Asymmetric Supercapacitor". Molecules 28, nr 7 (3.04.2023): 3177. http://dx.doi.org/10.3390/molecules28073177.
Pełny tekst źródłaBeitollahi, Hadi, Fraiba Garkani Nejad, Somayeh Tajik i Antonio Di Bartolomeo. "Screen-Printed Graphite Electrode Modified with Graphene-Co3O4 Nanocomposite: Voltammetric Assay of Morphine in the Presence of Diclofenac in Pharmaceutical and Biological Samples". Nanomaterials 12, nr 19 (3.10.2022): 3454. http://dx.doi.org/10.3390/nano12193454.
Pełny tekst źródłaAdesuji, Elijah T., Esther Guardado-Villegas, Keyla M. Fuentes, Margarita Sánchez-Domínguez i Marcelo Videa. "Pt-Co3O4 Superstructures by One-Pot Reduction/Precipitation in Bicontinuous Microemulsion for Electrocatalytic Oxygen Evolution Reaction". Catalysts 10, nr 11 (12.11.2020): 1311. http://dx.doi.org/10.3390/catal10111311.
Pełny tekst źródłaSun, Guanliang, Ning Li, Dan Wang, Guanchen Xu, Xingshuang Zhang, Hongyu Gong, Dongwei Li i in. "A Novel 3D Hierarchical Plasmonic Functional Cu@Co3O4@Ag Array as Intelligent SERS Sensing Platform with Trace Droplet Rapid Detection Ability for Pesticide Residue Detection on Fruits and Vegetables". Nanomaterials 11, nr 12 (20.12.2021): 3460. http://dx.doi.org/10.3390/nano11123460.
Pełny tekst źródłaLozhkomoev, Aleksandr S., Alexander V. Pervikov, Sergey O. Kazantsev, Konstantin V. Suliz, Roman V. Veselovskiy, Andrey A. Miller i Marat I. Lerner. "Controlled Oxidation of Cobalt Nanoparticles to Obtain Co/CoO/Co3O4 Composites with Different Co Content". Nanomaterials 12, nr 15 (22.07.2022): 2523. http://dx.doi.org/10.3390/nano12152523.
Pełny tekst źródłaNivas, Bharath, Aleena Rose, B. Shunmugapriya i T. Vijayakumar. "Investigation on Spinel Co3O4 Nanoparticles through Mechanochemical Technique". IOP Conference Series: Materials Science and Engineering 1219, nr 1 (1.01.2022): 012022. http://dx.doi.org/10.1088/1757-899x/1219/1/012022.
Pełny tekst źródłaGao, S., X. D. Li i M. Zhang. "Bionspired slippery surfaces by cluster-like ZnO@Co3O4 and its anti-corrosion performance". Digest Journal of Nanomaterials and Biostructures 16, nr 4 (grudzień 2021): 1565–73. http://dx.doi.org/10.15251/djnb.2021.164.1565.
Pełny tekst źródłaBedair, Tarek M., Il Jae Min, Wooram Park, Yoon Ki Joung i Dong Keun Han. "Sustained drug release using cobalt oxide nanowires for the preparation of polymer-free drug-eluting stents". Journal of Biomaterials Applications 33, nr 3 (wrzesień 2018): 352–62. http://dx.doi.org/10.1177/0885328218792141.
Pełny tekst źródłaTamiru Mengistu, Mintesinot, Tadele Hunde Wondimu, Dinsefa Mensur Andoshe, Jung Yong Kim, Osman Ahmed Zelekew, Fekadu Gashaw Hone, Newaymedhin Aberra Tegene, Noto Susanto Gultom i Ho Won Jang. "g -C3N4–Co3O4 Z-Scheme Junction with Green-Synthesized ZnO Photocatalyst for Efficient Degradation of Methylene Blue in Aqueous Solution". Bioinorganic Chemistry and Applications 2023 (5.06.2023): 1–14. http://dx.doi.org/10.1155/2023/2948342.
Pełny tekst źródła