Artykuły w czasopismach na temat „Co2P Nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Co2P Nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Green, Michael, Lihong Tian, Peng Xiang, James Murowchick, Xinyu Tan i Xiaobo Chen. "Co2P nanoparticles for microwave absorption". Materials Today Nano 1 (marzec 2018): 1–7. http://dx.doi.org/10.1016/j.mtnano.2018.04.004.
Pełny tekst źródłaSun, Xingwei, Haiou Liang, Haiyan Yu, Jie Bai i Chunping Li. "Embedding Co2P nanoparticles in Cu doping carbon fibers for Zn–air batteries and supercapacitors". Nanotechnology 33, nr 13 (7.01.2022): 135202. http://dx.doi.org/10.1088/1361-6528/ac43ea.
Pełny tekst źródłaWang, Ke, Ruimin Zhang, Yun Guo, Yunjie Liu, Yu Tian, Xiaojun Wang, Peng Wang i Zhiming Liu. "One-Step Construction of Co2P Nanoparticles Encapsulated into N-Doped Porous Carbon Sheets for Efficient Oxygen Evolution Reaction". Energies 16, nr 1 (1.01.2023): 478. http://dx.doi.org/10.3390/en16010478.
Pełny tekst źródłaShi, Qing, Yapeng Zheng, Weijun Li, Bin Tang, Lin Qin, Weiyou Yang i Qiao Liu. "A rationally designed bifunctional oxygen electrocatalyst based on Co2P nanoparticles for Zn–air batteries". Catalysis Science & Technology 10, nr 15 (2020): 5060–68. http://dx.doi.org/10.1039/d0cy01012j.
Pełny tekst źródłaZhang, Xiaofang, Aixian Shan, Sibin Duan, Haofei Zhao, Rongming Wang i Woon-Ming Lau. "Au@Co2P core/shell nanoparticles as a nano-electrocatalyst for enhancing the oxygen evolution reaction". RSC Advances 9, nr 70 (2019): 40811–18. http://dx.doi.org/10.1039/c9ra07535f.
Pełny tekst źródłaJebaslinhepzybai, Balasingh Thangadurai, Thamodaran Partheeban, Deepak S. Gavali, Ranjit Thapa i Manickam Sasidharan. "One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts". International Journal of Hydrogen Energy 46, nr 42 (czerwiec 2021): 21924–38. http://dx.doi.org/10.1016/j.ijhydene.2021.04.022.
Pełny tekst źródłaDas, Debanjan, Debasish Sarkar, Sudhan Nagarajan i David Mitlin. "Cobalt phosphide (Co2P) encapsulated in nitrogen-rich hollow carbon nanocages with fast rate potassium ion storage". Chemical Communications 56, nr 94 (2020): 14889–92. http://dx.doi.org/10.1039/d0cc07123d.
Pełny tekst źródłaStelmakova, M., M. Streckova, R. Orinakova, A. Guboova, M. Balaz, V. Girman, E. Mudra, C. Bera i M. Batkova. "Effect of heat treatment on the morphology of carbon fibers doped with Co2p nanoparticles". Chemical Papers 76, nr 2 (7.10.2021): 855–67. http://dx.doi.org/10.1007/s11696-021-01897-0.
Pełny tekst źródłaZhang, Dan, Panpan Sun, Zhuang Zuo, Tao Gong, Niu Huang, Xiaowei Lv, Ye Sun i Xiaohua Sun. "N, P-co doped carbon nanotubes coupled with Co2P nanoparticles as bifunctional oxygen electrocatalyst". Journal of Electroanalytical Chemistry 871 (sierpień 2020): 114327. http://dx.doi.org/10.1016/j.jelechem.2020.114327.
Pełny tekst źródłaDiao, Lechen, Tao Yang, Biao Chen, Biao Zhang, Naiqin Zhao, Chunsheng Shi, Enzuo Liu, Liying Ma i Chunnian He. "Electronic reconfiguration of Co2P induced by Cu doping enhancing oxygen reduction reaction activity in zinc–air batteries". Journal of Materials Chemistry A 7, nr 37 (2019): 21232–43. http://dx.doi.org/10.1039/c9ta07652b.
Pełny tekst źródłaLiang, Zhibin, i Xinfa Dong. "Co2P nanosheet cocatalyst-modified Cd0.5Zn0.5S nanoparticles as 2D-0D heterojunction photocatalysts toward high photocatalytic activity". Journal of Photochemistry and Photobiology A: Chemistry 407 (luty 2021): 113081. http://dx.doi.org/10.1016/j.jphotochem.2020.113081.
Pełny tekst źródłaZhuang, Minghao, Xuewu Ou, Yubing Dou, Lulu Zhang, Qicheng Zhang, Ruizhe Wu, Yao Ding, Minhua Shao i Zhengtang Luo. "Polymer-Embedded Fabrication of Co2P Nanoparticles Encapsulated in N,P-Doped Graphene for Hydrogen Generation". Nano Letters 16, nr 7 (9.06.2016): 4691–98. http://dx.doi.org/10.1021/acs.nanolett.6b02203.
Pełny tekst źródłaLiu, Guang, Na Li, Yong Zhao, Rui Yao, Muheng Wang, Dongying He i Jinping Li. "Fabrication of Fe-doped Co2P nanoparticles as efficient electrocatalyst for electrochemical and photoelectrochemical water oxidation". Electrochimica Acta 283 (wrzesień 2018): 1490–97. http://dx.doi.org/10.1016/j.electacta.2018.07.107.
Pełny tekst źródłaDuan, Ran, Yejun Li, Shen Gong, Yonggang Tong, Zhou Li i Weihong Qi. "Hierarchical CoFe oxyhydroxides nanosheets and Co2P nanoparticles grown on Ni foam for overall water splitting". Electrochimica Acta 360 (listopad 2020): 136994. http://dx.doi.org/10.1016/j.electacta.2020.136994.
Pełny tekst źródłaHua, Yanping, Qiucheng Xu, Yanjie Hu, Hao Jiang i Chunzhong Li. "Interface-strengthened CoP nanosheet array with Co2P nanoparticles as efficient electrocatalysts for overall water splitting". Journal of Energy Chemistry 37 (październik 2019): 1–6. http://dx.doi.org/10.1016/j.jechem.2018.11.010.
Pełny tekst źródłaWang, Haitao, Wei Wang, Yang Yang Xu, Muhammad Asif, Hongfang Liu i Bao Yu Xia. "Ball-milling synthesis of Co2P nanoparticles encapsulated in nitrogen doped hollow carbon rods as efficient electrocatalysts". Journal of Materials Chemistry A 5, nr 33 (2017): 17563–69. http://dx.doi.org/10.1039/c7ta05510b.
Pełny tekst źródłaSchweyer-Tihay, F., P. Braunstein, C. Estournès, J. L. Guille, B. Lebeau, J. L. Paillaud, M. Richard-Plouet i J. Rosé. "Synthesis and Characterization of Supported Co2P Nanoparticles by Grafting of Molecular Clusters into Mesoporous Silica Matrixes‖". Chemistry of Materials 15, nr 1 (styczeń 2003): 57–62. http://dx.doi.org/10.1021/cm020132m.
Pełny tekst źródłaWang, Xiaoyang, Chunhong Liu, Chun Wu, Xiaomin Tian, Kai Wang, Wenli Pei i Qiang Wang. "Magnetic field assisted synthesis of Co2P hollow nanoparticles with controllable shell thickness for hydrogen evolution reaction". Electrochimica Acta 330 (styczeń 2020): 135191. http://dx.doi.org/10.1016/j.electacta.2019.135191.
Pełny tekst źródłaChen, Kuiyong, Xiaobin Huang, Chaoying Wan i Hong Liu. "Hybrids based on transition metal phosphide (Mn2P, Co2P, Ni2P) nanoparticles and heteroatom-doped carbon nanotubes for efficient oxygen reduction reaction". RSC Advances 5, nr 113 (2015): 92893–98. http://dx.doi.org/10.1039/c5ra21385a.
Pełny tekst źródłaSun, Xingwei, Huan Liu, Guangran Xu, Jie Bai i Chunping Li. "Embedding Co2P nanoparticles into N&P co-doped carbon fibers for hydrogen evolution reaction and supercapacitor". International Journal of Hydrogen Energy 46, nr 2 (styczeń 2021): 1560–68. http://dx.doi.org/10.1016/j.ijhydene.2020.10.018.
Pełny tekst źródłaWang, Xiaoqing, Jijian Xu, Mingjia Zhi, Zhanglian Hong i Fuqiang Huang. "Synthesis of Co2P nanoparticles decorated nitrogen, phosphorus Co-doped Carbon-CeO2 composites for highly efficient oxygen reduction". Journal of Alloys and Compounds 801 (wrzesień 2019): 192–98. http://dx.doi.org/10.1016/j.jallcom.2019.06.087.
Pełny tekst źródłaLi, Yan, Mengnan Cui, Tianjiao Li, Yu Shen, Zhenjun Si i Heng-guo Wang. "Embedding Co2P nanoparticles into co-doped carbon hollow polyhedron as a bifunctional electrocatalyst for efficient overall water splitting". International Journal of Hydrogen Energy 45, nr 33 (czerwiec 2020): 16540–49. http://dx.doi.org/10.1016/j.ijhydene.2020.04.137.
Pełny tekst źródłaYang, Yuanyuan, Xiongyi Liang, Feng Li, Shuwen Li, Xinzhe Li, Siu-Pang Ng, Chi-Man Lawrence Wu i Rong Li. "Encapsulating Co2P@C Core-Shell Nanoparticles in a Porous Carbon Sandwich as Dual-Doped Electrocatalyst for Hydrogen Evolution". ChemSusChem 11, nr 2 (9.01.2018): 376–88. http://dx.doi.org/10.1002/cssc.201701705.
Pełny tekst źródłaLi, Di, Zengyong Li, Jiaojiao Ma, Xinwen Peng i Chuanfu Liu. "One-step construction of Co2P nanoparticles encapsulated in N, P co-doped biomass-based porous carbon as bifunctional efficient electrocatalysts for overall water splitting". Sustainable Energy & Fuels 5, nr 9 (2021): 2477–85. http://dx.doi.org/10.1039/d1se00062d.
Pełny tekst źródłaDas, Debanjan, i Karuna Kar Nanda. "One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting". Nano Energy 30 (grudzień 2016): 303–11. http://dx.doi.org/10.1016/j.nanoen.2016.10.024.
Pełny tekst źródłaJiang, Deli, Wanxia Ma, Yimeng Zhou, Yingying Xing, Biao Quan i Di Li. "Coupling Co2P and CoP nanoparticles with copper ions incorporated Co9S8 nanowire arrays for synergistically boosting hydrogen evolution reaction electrocatalysis". Journal of Colloid and Interface Science 550 (sierpień 2019): 10–16. http://dx.doi.org/10.1016/j.jcis.2019.04.080.
Pełny tekst źródłaLei, Chaojun, Fenfen Wang, Jian Yang, Xianfeng Gao, Xinyao Yu, Bin Yang, Guohua Chen, Chris Yuan, Lecheng Lei i Yang Hou. "Embedding Co2P Nanoparticles in N-Doped Carbon Nanotubes Grown on Porous Carbon Polyhedra for High-Performance Lithium-Ion Batteries". Industrial & Engineering Chemistry Research 57, nr 39 (10.09.2018): 13019–25. http://dx.doi.org/10.1021/acs.iecr.8b02036.
Pełny tekst źródłaZhou, Dan, i Li-Zhen Fan. "Co2P nanoparticles encapsulated in 3D porous N-doped carbon nanosheet networks as an anode for high-performance sodium-ion batteries". Journal of Materials Chemistry A 6, nr 5 (2018): 2139–47. http://dx.doi.org/10.1039/c7ta09609g.
Pełny tekst źródłaLi, Xiang, Jingwen Ma, Jiaqing Luo, Shuting Cheng, Hanzhang Gong, Jian Liu, Chunming Xu i in. "Porous N, P co-doped carbon-coated ultrafine Co2P nanoparticles derived from DNA: An electrocatalyst for highly efficient hydrogen evolution reaction". Electrochimica Acta 393 (październik 2021): 139051. http://dx.doi.org/10.1016/j.electacta.2021.139051.
Pełny tekst źródłaDuan, Jingmin, Zhongqing Xiang, Hongsong Zhang, Bing Zhang i Xu Xiang. "Pd-Co2P nanoparticles supported on N-doped biomass-based carbon microsheet with excellent catalytic performance for hydrogen evolution from formic acid". Applied Surface Science 530 (listopad 2020): 147191. http://dx.doi.org/10.1016/j.apsusc.2020.147191.
Pełny tekst źródłaOu, Guanrong, Zhijian Peng, Yuling Zhang, Zhaohui Xu, Akif Zeb, Zhenyu Wu, Xiaoming Lin, Guozheng Ma i Yongbo Wu. "A metal-organic framework-derived engineering of carbon-encapsulated monodispersed CoP/Co2P@N C electroactive nanoparticles toward highly efficient lithium storage". Electrochimica Acta 467 (listopad 2023): 143098. http://dx.doi.org/10.1016/j.electacta.2023.143098.
Pełny tekst źródłaShao, Qi, Yan Li, Xu Cui, Tianjiao Li, Heng-guo Wang, Yanhui Li, Qian Duan i Zhenjun Si. "Metallophthalocyanine-Based Polymer-Derived Co2P Nanoparticles Anchoring on Doped Graphene as High-Efficient Trifunctional Electrocatalyst for Zn-Air Batteries and Water Splitting". ACS Sustainable Chemistry & Engineering 8, nr 16 (1.04.2020): 6422–32. http://dx.doi.org/10.1021/acssuschemeng.0c00852.
Pełny tekst źródłaWang, Xuting, Zuoyi Xiao, Wensha Niu, Zhenyu Zhao, Hui Lv, Shangru Zhai, Li Wei, Qingda An i Chengrong Qin. "Co2P-Co3(PO4)2 nanoparticles immobilized on kelp-derived 3D honeycomb-like P-doped porous carbon as cathode electrode for high-performance asymmetrical supercapacitor". Colloids and Surfaces A: Physicochemical and Engineering Aspects 655 (grudzień 2022): 130192. http://dx.doi.org/10.1016/j.colsurfa.2022.130192.
Pełny tekst źródłaLi, Xinzhe, Yiyun Fang, Feng Li, Min Tian, Xuefeng Long, Jun Jin i Jiantai Ma. "Ultrafine Co2P nanoparticles encapsulated in nitrogen and phosphorus dual-doped porous carbon nanosheet/carbon nanotube hybrids: high-performance bifunctional electrocatalysts for overall water splitting". Journal of Materials Chemistry A 4, nr 40 (2016): 15501–10. http://dx.doi.org/10.1039/c6ta05485d.
Pełny tekst źródłaKaewtrakulchai, Napat, Rungnapa Kaewmeesri, Vorranutch Itthibenchapong, Apiluck Eiad-Ua i Kajornsak Faungnawakij. "Palm Oil Conversion to Bio-Jet and Green Diesel Fuels over Cobalt Phosphide on Porous Carbons Derived from Palm Male Flowers". Catalysts 10, nr 6 (19.06.2020): 694. http://dx.doi.org/10.3390/catal10060694.
Pełny tekst źródłaHan, Zhu, Jiu-Ju Feng, You-Qiang Yao, Zhi-Gang Wang, Lu Zhang i Ai-Jun Wang. "Mn, N, P-tridoped bamboo-like carbon nanotubes decorated with ultrafine Co2P/FeCo nanoparticles as bifunctional oxygen electrocatalyst for long-term rechargeable Zn-air battery". Journal of Colloid and Interface Science 590 (maj 2021): 330–40. http://dx.doi.org/10.1016/j.jcis.2021.01.053.
Pełny tekst źródłaAli, Asad, Yang Liu, Rongcheng Mo, Pinsong Chen i Pei Kang Shen. "Facile one-step in-situ encapsulation of non-noble metal Co2P nanoparticles embedded into B, N, P tri-doped carbon nanotubes for efficient hydrogen evolution reaction". International Journal of Hydrogen Energy 45, nr 46 (wrzesień 2020): 24312–21. http://dx.doi.org/10.1016/j.ijhydene.2020.06.235.
Pełny tekst źródłaArslan, Mehmet Enes, Arzu Tatar, Özge Çağlar Yıldırım, İrfan Oğuz Şahin, Ozlem Ozdemir, Erdal Sonmez, Ahmet Hacımuftuoglu i in. "In Vitro Transcriptome Analysis of Cobalt Boride Nanoparticles on Human Pulmonary Alveolar Cells". Materials 15, nr 23 (6.12.2022): 8683. http://dx.doi.org/10.3390/ma15238683.
Pełny tekst źródłaSang, Xinxin, Hengbo Wu, Nan Zang, Huilian Che, Dongyin Liu, Xiangdao Nie, Dawei Wang, Xiaoxue Ma i Wei Jin. "Co2P nanoparticle/multi-doped porous carbon nanosheets for the oxygen evolution reaction". New Journal of Chemistry 45, nr 19 (2021): 8769–74. http://dx.doi.org/10.1039/d1nj00613d.
Pełny tekst źródłaYi, Lanhua, Xiaoqin Peng, Yuan Meng, Yonglan Ding, Xianyou Wang i Yebo Lu. "N-Doped carbon-coated Co2P-supported Au nanocomposite as the anode catalyst for borohydride electrooxidation". New Journal of Chemistry 45, nr 32 (2021): 14779–88. http://dx.doi.org/10.1039/d1nj02240g.
Pełny tekst źródłaGhasemi, Ali, Gholam Reza Gordani i Ebrahim Ghasemi. "Co2W hexaferrite nanoparticles-carbon nanotube microwave absorbing nanocomposite". Journal of Magnetism and Magnetic Materials 469 (styczeń 2019): 391–97. http://dx.doi.org/10.1016/j.jmmm.2018.09.010.
Pełny tekst źródłaReddy, M. Surya Sekhar, C. Sai Vandana i Y. B. Kishore Kumar. "Tailoring the Inherent Magnetism of N:CdS Nanoparticles with Co2+ Doping". Indian Journal Of Science And Technology 16, nr 27 (24.07.2023): 2024–34. http://dx.doi.org/10.17485/ijst/v16i27.596.
Pełny tekst źródłaCarroll, Kyler J., Zachary J. Huba, Steven R. Spurgeon, Meichun Qian, Shiv N. Khanna, Daniel M. Hudgins, Mitra L. Taheri i Everett E. Carpenter. "Magnetic properties of Co2C and Co3C nanoparticles and their assemblies". Applied Physics Letters 101, nr 1 (2.07.2012): 012409. http://dx.doi.org/10.1063/1.4733321.
Pełny tekst źródłaChoi, Young In, Ju Hyun Yang, So Jeong Park i Youngku Sohn. "Energy Storage and CO2 Reduction Performances of Co/Co2C/C Prepared by an Anaerobic Ethanol Oxidation Reaction Using Sacrificial SnO2". Catalysts 10, nr 10 (25.09.2020): 1116. http://dx.doi.org/10.3390/catal10101116.
Pełny tekst źródłaLin, Yi-Heng, Po-Chia Huang, Sheng-Chang Wang i Jow-Lay Huang. "Highly active electrocatalyst cobalt-carbide nanoparticles synthesized by wet-chemistry method for hydrogen evolution reaction". Modern Physics Letters B 34, nr 07n09 (16.03.2020): 2040022. http://dx.doi.org/10.1142/s0217984920400229.
Pełny tekst źródłaLi, Z. W., L. Chen, C. K. Ong i Z. Yang. "Static and dynamic magnetic properties of Co2Z barium ferrite nanoparticle composites". Journal of Materials Science 40, nr 3 (luty 2005): 719–23. http://dx.doi.org/10.1007/s10853-005-6312-y.
Pełny tekst źródłaWang, Pengyan, Jiawei Zhu, Zonghua Pu, Rui Qin, Chengtian Zhang, Ding Chen, Qian Liu i in. "Interfacial engineering of Co nanoparticles/Co2C nanowires boosts overall water splitting kinetics". Applied Catalysis B: Environmental 296 (listopad 2021): 120334. http://dx.doi.org/10.1016/j.apcatb.2021.120334.
Pełny tekst źródłaYu, Shi, i Gan Moog Chow. "Carboxyl group (–CO2H) functionalized ferrimagnetic iron oxide nanoparticles for potential bio-applications". J. Mater. Chem. 14, nr 18 (2004): 2781–86. http://dx.doi.org/10.1039/b404964k.
Pełny tekst źródłaNikzad, Alireza, Ali Ghasemi, Masoud Kavosh Tehrani i Gholam Reza Gordani. "Correlation Between Structural Features and Microwave Analysis of Substituted Sr-Co2Y Ceramic Nanoparticles". Journal of Superconductivity and Novel Magnetism 29, nr 6 (17.02.2016): 1657–64. http://dx.doi.org/10.1007/s10948-016-3430-5.
Pełny tekst źródłaNovio, Fernando, Julia Lorenzo, Fabiana Nador, Karolina Wnuk i Daniel Ruiz-Molina. "Carboxyl Group (CO2H) Functionalized Coordination Polymer Nanoparticles as Efficient Platforms for Drug Delivery". Chemistry - A European Journal 20, nr 47 (5.10.2014): 15443–50. http://dx.doi.org/10.1002/chem.201403441.
Pełny tekst źródła