Gotowa bibliografia na temat „Co2P Nanoparticles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Co2P Nanoparticles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Co2P Nanoparticles"
Green, Michael, Lihong Tian, Peng Xiang, James Murowchick, Xinyu Tan, and Xiaobo Chen. "Co2P nanoparticles for microwave absorption." Materials Today Nano 1 (March 2018): 1–7. http://dx.doi.org/10.1016/j.mtnano.2018.04.004.
Pełny tekst źródłaSun, Xingwei, Haiou Liang, Haiyan Yu, Jie Bai, and Chunping Li. "Embedding Co2P nanoparticles in Cu doping carbon fibers for Zn–air batteries and supercapacitors." Nanotechnology 33, no. 13 (2022): 135202. http://dx.doi.org/10.1088/1361-6528/ac43ea.
Pełny tekst źródłaWang, Ke, Ruimin Zhang, Yun Guo, et al. "One-Step Construction of Co2P Nanoparticles Encapsulated into N-Doped Porous Carbon Sheets for Efficient Oxygen Evolution Reaction." Energies 16, no. 1 (2023): 478. http://dx.doi.org/10.3390/en16010478.
Pełny tekst źródłaShi, Qing, Yapeng Zheng, Weijun Li, et al. "A rationally designed bifunctional oxygen electrocatalyst based on Co2P nanoparticles for Zn–air batteries." Catalysis Science & Technology 10, no. 15 (2020): 5060–68. http://dx.doi.org/10.1039/d0cy01012j.
Pełny tekst źródłaZhang, Xiaofang, Aixian Shan, Sibin Duan, Haofei Zhao, Rongming Wang, and Woon-Ming Lau. "Au@Co2P core/shell nanoparticles as a nano-electrocatalyst for enhancing the oxygen evolution reaction." RSC Advances 9, no. 70 (2019): 40811–18. http://dx.doi.org/10.1039/c9ra07535f.
Pełny tekst źródłaJebaslinhepzybai, Balasingh Thangadurai, Thamodaran Partheeban, Deepak S. Gavali, Ranjit Thapa, and Manickam Sasidharan. "One-pot solvothermal synthesis of Co2P nanoparticles: An efficient HER and OER electrocatalysts." International Journal of Hydrogen Energy 46, no. 42 (2021): 21924–38. http://dx.doi.org/10.1016/j.ijhydene.2021.04.022.
Pełny tekst źródłaDas, Debanjan, Debasish Sarkar, Sudhan Nagarajan, and David Mitlin. "Cobalt phosphide (Co2P) encapsulated in nitrogen-rich hollow carbon nanocages with fast rate potassium ion storage." Chemical Communications 56, no. 94 (2020): 14889–92. http://dx.doi.org/10.1039/d0cc07123d.
Pełny tekst źródłaStelmakova, M., M. Streckova, R. Orinakova, et al. "Effect of heat treatment on the morphology of carbon fibers doped with Co2p nanoparticles." Chemical Papers 76, no. 2 (2021): 855–67. http://dx.doi.org/10.1007/s11696-021-01897-0.
Pełny tekst źródłaZhang, Dan, Panpan Sun, Zhuang Zuo, et al. "N, P-co doped carbon nanotubes coupled with Co2P nanoparticles as bifunctional oxygen electrocatalyst." Journal of Electroanalytical Chemistry 871 (August 2020): 114327. http://dx.doi.org/10.1016/j.jelechem.2020.114327.
Pełny tekst źródłaDiao, Lechen, Tao Yang, Biao Chen, et al. "Electronic reconfiguration of Co2P induced by Cu doping enhancing oxygen reduction reaction activity in zinc–air batteries." Journal of Materials Chemistry A 7, no. 37 (2019): 21232–43. http://dx.doi.org/10.1039/c9ta07652b.
Pełny tekst źródłaRozprawy doktorskie na temat "Co2P Nanoparticles"
Fu, Chunkai. "Investigation of the Stability of Nanoparticles under Different Conditions and Rheology of Nanoparticle-Stabilized CO2 Foam." Thesis, University of Louisiana at Lafayette, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10814705.
Pełny tekst źródłaGarg, Garima. "Solvants ioniques biosourcés et CO2 supercritique : conception des processus durables pour la synthèse de molécules cibles (BISCO2)." Thesis, Toulouse, INPT, 2019. http://www.theses.fr/2019INPT0085.
Pełny tekst źródłaLIENDO, CASTILLO FREDDY JESUS. "CO2 conversion through the synthesis of CaCO3 nanoparticles." Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2907014.
Pełny tekst źródłaBenzaqui, Marvin. "Synthesis of Metal-Organic Framework nanoparticles and mixed-matrix membrane preparation for gas separation and CO2 capture." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLV075/document.
Pełny tekst źródłaKim, Ara. "Nanostructured Ru/TiO2 catalysts for CO2 methanation." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066067.
Pełny tekst źródłaHijazi, Nibal. "Développement de composites nanostructurés à base de biopolyesters et de nanoparticules de chitosane générées par des procédés assistés par CO2 supercritique." Thesis, Ecole nationale des Mines d'Albi-Carmaux, 2014. http://www.theses.fr/2014EMAC0016/document.
Pełny tekst źródłaKaydouh, Marie-Nour. "Confinement effect of Nickel in mesoporous silica-based catalysts for syngas production by reforming of methane with CO2." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066425/document.
Pełny tekst źródłaDe, Masi Deborah. "Nanoparticules bimétalliques combinant propriétés catalytiques et physiques pour la valorisation du CO2 et de la biomasse." Thesis, Toulouse, INSA, 2019. http://www.theses.fr/2019ISAT0024.
Pełny tekst źródłaAli, Muhammad. "Effect of Organics and Nanoparticles on CO2-Wettability of Reservoir Rock; Implications for CO2 Geo-Storage." Thesis, Curtin University, 2021. http://hdl.handle.net/20.500.11937/83829.
Pełny tekst źródłaGu, Yingying. "Membranes polymères fonctionnalisées par des poly(liquide ionique)s et des nanoparticules de palladium : applications au captage de CO2 et aux membranes catalytiques." Thesis, Toulouse 3, 2015. http://www.theses.fr/2015TOU30157/document.
Pełny tekst źródłaCzęści książek na temat "Co2P Nanoparticles"
Guo, Feng, and Saman A. Aryana. "Nanoparticle-Stabilized CO2 Foam Flooding." In Advances in Petroleum Engineering and Petroleum Geochemistry. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-01578-7_15.
Pełny tekst źródłaYu, W., T. Wang, M. X. Fang, H. Hei, and Z. Y. Luo. "CO2 Absorption/Desorption Enhanced by Nanoparticles in Post-combustion CO2 Capture." In Clean Coal Technology and Sustainable Development. Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-2023-0_80.
Pełny tekst źródłaKumar, Santosh, Wei Li, and Adam F. Lee. "Chapter 8. Nanocatalysts for CO2 Conversion." In Nanoparticle Design and Characterization for Catalytic Applications in Sustainable Chemistry. Royal Society of Chemistry, 2019. http://dx.doi.org/10.1039/9781788016292-00207.
Pełny tekst źródłaSagar, Vikram Tatiparthi, and Albin Pintar. "Supported Metal Nanoparticles and Single-Atoms for Catalytic CO2 Utilization." In ACS Symposium Series. American Chemical Society, 2020. http://dx.doi.org/10.1021/bk-2020-1360.ch010.
Pełny tekst źródłaYang, Guoxiang, Yasutata Kuwahara, Kohsuke Mori, and Hiromi Yamashita. "Hollow Carbon Spheres Encapsulating Metal Nanoparticles for CO2 Hydrogenation Reactions." In Core-Shell and Yolk-Shell Nanocatalysts. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-0463-8_26.
Pełny tekst źródłaSato, Tsugio, Chong-shen Guo, and Shu Yin. "Novel Tungsten Bronze Nanoparticles for Shielding Near Infrared Ray and Decreasing CO2 Emission." In Energy, Transportation and Global Warming. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-30127-3_27.
Pełny tekst źródłaLi, Weiqin, Zaiping Nie, and Wenhe Xia. "CO2 Sequestration Electromagnetic Imaging Based on Nanoparticle Contrast Agent and Casing Excitation." In Proceedings of the International Field Exploration and Development Conference 2018. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-7127-1_65.
Pełny tekst źródłaYanchi, Jiang, Zhang Zhongxiao, Yu Juan, et al. "Comprehensive Analyses on Activation Agents of Amines and Nanoparticles for TETA-Based CO2 Capture Absorbents." In Clean Coal and Sustainable Energy. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-1657-0_47.
Pełny tekst źródłaKashetti, Shrutika, Greeshma K. Anand, and Priya C. Sande. "CFD Simulation of EOR Technique, by Gas Injection of CO2-LPG Along with the Nanoparticles by Using the Eulerian–Eulerian Approach." In Lecture Notes in Mechanical Engineering. Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6928-6_20.
Pełny tekst źródłaNatividad, Reyna. "CO2 photoconversion catalyzed by nanoparticles supported on TiO2." In Nanoparticles in Green Organic Synthesis. Elsevier, 2023. http://dx.doi.org/10.1016/b978-0-323-95921-6.00013-5.
Pełny tekst źródłaStreszczenia konferencji na temat "Co2P Nanoparticles"
Li, Lirong, and Yong Tae Kang. "Three-Dimensional Simulation of Bubble Behavior and Mass Transfer for CO2 Absorption in Nanoabsorbents." In ASME 2019 6th International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/mnhmt2019-3944.
Pełny tekst źródłaAlfakher, Ahmad M., and David A. DiCarlo. "Reduced Carbon Dioxide Mobility in Experimental Core Flood Using Surface Coated Silica Nanoparticles as a Foaming Agent." In Offshore Technology Conference. OTC, 2023. http://dx.doi.org/10.4043/32382-ms.
Pełny tekst źródłaSipkens, T. A., N. R. Singh, K. J. Daun, et al. "Time Resolved Laser Induced Incandescence for Sizing Aerosolized Iron Nanoparticles." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-38515.
Pełny tekst źródłaTelmadarreie, Ali, Christopher Johnsen, and Steven Bryant. "A Step-Change Improvement in Fluid Diversion, Oil Sweep Efficiency, and CO2 Storage Using Novel Nanoparticle-Based Foam." In SPE Canadian Energy Technology Conference. SPE, 2022. http://dx.doi.org/10.2118/208933-ms.
Pełny tekst źródłaRutherford, William, Wessam Elomar, A. G. Agwu Nnanna, and Brian Sankowski. "An Integrated Thermoelectric Nanofluid Heat Exchanger." In ASME 2007 InterPACK Conference collocated with the ASME/JSME 2007 Thermal Engineering Heat Transfer Summer Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/ipack2007-33698.
Pełny tekst źródłaRiyaz, Najam US Sahar, Karthik Kannan, Aboubakr M. Abdullah, and Kishor Kumar Sadasivuni. "Facile Synthesis of Mesoporous Silica Nanoparticles and its Electrochemical Conversion of CO2 to Fuels." In Qatar University Annual Research Forum & Exhibition. Qatar University Press, 2020. http://dx.doi.org/10.29117/quarfe.2020.0094.
Pełny tekst źródłaAlfakher, Ahmad, and David A. DiCarlo. "Enhanced Experimental Carbon Dioxide Sweep Using Surface Coated Silica Nanoparticles as a Foaming Agent." In SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206278-ms.
Pełny tekst źródłaYu, Jianjia, Ning Liu, Liangxiong Li, and Robert L. Lee. "Generation of Nanoparticle-Stabilized Supercritical CO2 Foams." In Carbon Management Technology Conference. Carbon Management Technology Conference, 2012. http://dx.doi.org/10.7122/150849-ms.
Pełny tekst źródłaMachmudah, Siti, Wahyudiono, Yutaka Kuwahara, Mitsuru Sasaki, and Motonobu Goto. "Pulsed laser ablation in pressurized CO2 for nanoparticles fabrication." In TENCON 2011 - 2011 IEEE Region 10 Conference. IEEE, 2011. http://dx.doi.org/10.1109/tencon.2011.6129219.
Pełny tekst źródłaJoshi, Seema, Manoj Kumar, and Geetika Srivastava. "Optical and magnetic properties of Co2+ substituted NiFe2O4 nanoparticles." In DAE SOLID STATE PHYSICS SYMPOSIUM 2015. Author(s), 2016. http://dx.doi.org/10.1063/1.4948126.
Pełny tekst źródłaRaporty organizacyjne na temat "Co2P Nanoparticles"
Chistopher Roberts. Final Report for Fractionation and Separation of Polydisperse Nanoparticles into Distinct Monodisperse Fractions Using CO2 Expanded Liquids. Office of Scientific and Technical Information (OSTI), 2007. http://dx.doi.org/10.2172/935215.
Pełny tekst źródła