Artykuły w czasopismach na temat „CO2 reduction catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CO2 reduction catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, nr 18 (28.06.2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Pełny tekst źródłaTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao i Na Sha. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis". Catalysts 12, nr 6 (2.06.2022): 612. http://dx.doi.org/10.3390/catal12060612.
Pełny tekst źródłaSrivastava, Sumit, Manvender S. Dagur, Afsar Ali i Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds". Dalton Transactions 44, nr 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Pełny tekst źródłaLisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, Yuri Zhukovskii, Janis Kleperis, Ainars Knoks i Peteris Lesnicenoks. "CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations". Crystals 12, nr 2 (28.01.2022): 194. http://dx.doi.org/10.3390/cryst12020194.
Pełny tekst źródłaPetersen, Haley A., Tessa H. T. Myren i Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction". Inorganics 8, nr 11 (11.11.2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Pełny tekst źródłaHahn, Christopher. "(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments". ECS Meeting Abstracts MA2022-02, nr 49 (9.10.2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.
Pełny tekst źródłaCao, Yanwei, Qiongyao Chen, Chaoren Shen i Lin He. "Polyoxometalate-Based Catalysts for CO2 Conversion". Molecules 24, nr 11 (30.05.2019): 2069. http://dx.doi.org/10.3390/molecules24112069.
Pełny tekst źródłaZhou, Yiying, Junxi Cai, Yuming Sun, Shuhan Jia, Zhonghuan Liu, Xu Tang, Bo Hu, Yue Zhang, Yan Yan i Zhi Zhu. "Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight". Catalysts 14, nr 8 (20.08.2024): 546. http://dx.doi.org/10.3390/catal14080546.
Pełny tekst źródłaXue, Sensen, Xingyou Liang, Qing Zhang, Xuefeng Ren, Liguo Gao, Tingli Ma i Anmin Liu. "Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH". Catalysts 14, nr 1 (20.12.2023): 7. http://dx.doi.org/10.3390/catal14010007.
Pełny tekst źródłaHall, Anthony Shoji, Youngmin Yoon, Anna Wuttig i Yogesh Surendranath. "Mesostructure-Induced Selectivity in CO2 Reduction Catalysis". Journal of the American Chemical Society 137, nr 47 (18.11.2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.
Pełny tekst źródłaGeri, Jacob B., Joanna L. Ciatti i Nathaniel K. Szymczak. "Charge effects regulate reversible CO2 reduction catalysis". Chemical Communications 54, nr 56 (2018): 7790–93. http://dx.doi.org/10.1039/c8cc04370a.
Pełny tekst źródłaJia, Mingwen, Qun Fan, Shizhen Liu, Jieshan Qiu i Zhenyu Sun. "Single-atom catalysis for electrochemical CO2 reduction". Current Opinion in Green and Sustainable Chemistry 16 (kwiecień 2019): 1–6. http://dx.doi.org/10.1016/j.cogsc.2018.11.002.
Pełny tekst źródłaGrills, David C., Mehmed Z. Ertem, Meaghan McKinnon, Ken T. Ngo i Jonathan Rochford. "Mechanistic aspects of CO2 reduction catalysis with manganese-based molecular catalysts". Coordination Chemistry Reviews 374 (listopad 2018): 173–217. http://dx.doi.org/10.1016/j.ccr.2018.05.022.
Pełny tekst źródłaXie, Wen-Jun, Olga M. Mulina, Alexander O. Terent’ev i Liang-Nian He. "Metal–Organic Frameworks for Electrocatalytic CO2 Reduction into Formic Acid". Catalysts 13, nr 7 (15.07.2023): 1109. http://dx.doi.org/10.3390/catal13071109.
Pełny tekst źródłaCobb, Samuel J., Azim M. Dharani, Ana Rita Oliveira, Inês A. C. Pereira i Erwin Reisner. "Using Enzymes to Understand and Control the Local Environment of Catalysis". ECS Meeting Abstracts MA2023-02, nr 52 (22.12.2023): 2530. http://dx.doi.org/10.1149/ma2023-02522530mtgabs.
Pełny tekst źródłaMarquart, Wijnand, Shaine Raseale, Gonzalo Prieto, Anna Zimina, Bidyut Bikash Sarma, Jan-Dierk Grunwaldt, Michael Claeys i Nico Fischer. "CO2 Reduction over Mo2C-Based Catalysts". ACS Catalysis 11, nr 3 (20.01.2021): 1624–39. http://dx.doi.org/10.1021/acscatal.0c05019.
Pełny tekst źródłaYuan, Zhimin, Xianhui Sun, Haiquan Wang, Xingling Zhao i Zaiyong Jiang. "Applications of Ni-Based Catalysts in Photothermal CO2 Hydrogenation Reaction". Molecules 29, nr 16 (16.08.2024): 3882. http://dx.doi.org/10.3390/molecules29163882.
Pełny tekst źródłaSt. John, Allison, Esraa Ahmad, Tianqi Jin i Gonghu Li. "(Invited) Single Atom Catalysts in Functionalized Carbon Nitride for Efficient Solar CO2 Reduction". ECS Meeting Abstracts MA2023-01, nr 37 (28.08.2023): 2160. http://dx.doi.org/10.1149/ma2023-01372160mtgabs.
Pełny tekst źródłaXuemei Yang and Xiaohua Wang, Xuemei Yang and Xiaohua Wang. "Reduction Reactions of CO2 on Rutile TiO2 (110) Nanosheet via Coordination Activation". Journal of the chemical society of pakistan 44, nr 6 (2022): 576. http://dx.doi.org/10.52568/001180/jcsp/44.06.2022.
Pełny tekst źródłaHahn, Christopher, i Thomas F. Jaramillo. "Electrocatalysis for CO2 Reduction: Controlling Selectivity to Oxygenates and Multicarbon Products". ECS Meeting Abstracts MA2018-01, nr 31 (13.04.2018): 1832. http://dx.doi.org/10.1149/ma2018-01/31/1832.
Pełny tekst źródłaBuonsanti, Raffaella. "Developing the Chemistry of Colloidal Cu Nanocrystals to Advance the CO2 Electrochemical Reduction". CHIMIA International Journal for Chemistry 75, nr 7 (25.08.2021): 598–604. http://dx.doi.org/10.2533/chimia.2021.598.
Pełny tekst źródłaHe, Liang-Nian, Xiao-Fang Liu, Xiao-Ya Li i Chang Qiao. "Transition-Metal-Free Catalysis for the Reductive Functionalization of CO2 with Amines". Synlett 29, nr 05 (31.01.2018): 548–55. http://dx.doi.org/10.1055/s-0036-1591533.
Pełny tekst źródłaAl-Omari, Abdulhadi, Zain Yamani i Ha Nguyen. "Electrocatalytic CO2 Reduction: From Homogeneous Catalysts to Heterogeneous-Based Reticular Chemistry". Molecules 23, nr 11 (1.11.2018): 2835. http://dx.doi.org/10.3390/molecules23112835.
Pełny tekst źródłaSelva Ochoa, Angela Gabriela, Faezeh Habibzadeh i Elod Lajos Gyenge. "Metal-Organic Framework-Based Electrodes for Efficient CO2 Electroreduction to Formate at High Current Densities (up to 1 A cm−2)". ECS Meeting Abstracts MA2024-01, nr 56 (9.08.2024): 2977. http://dx.doi.org/10.1149/ma2024-01562977mtgabs.
Pełny tekst źródłaRoldan Cuenya, Beatriz. "(Invited) Dynamics in the Electrocatalytic Reduction of CO2 ". ECS Meeting Abstracts MA2023-01, nr 37 (28.08.2023): 2163. http://dx.doi.org/10.1149/ma2023-01372163mtgabs.
Pełny tekst źródłaCobb, Samuel J., Vivek M. Badiani, Azim M. Dharani, Andreas Wagner, Sónia Zacarias, Ana Rita Oliveira, Inês A. C. Pereira i Erwin Reisner. "Fast CO2 hydration kinetics impair heterogeneous but improve enzymatic CO2 reduction catalysis". Nature Chemistry 14, nr 4 (28.02.2022): 417–24. http://dx.doi.org/10.1038/s41557-021-00880-2.
Pełny tekst źródłaKhajonvittayakul, Chalempol, Vut Tongnan, Suksun Amornraksa, Navadol Laosiripojana, Matthew Hartley i Unalome Wetwatana Hartley. "CO2 Hydrogenation to Synthetic Natural Gas over Ni, Fe and Co–Based CeO2–Cr2O3". Catalysts 11, nr 10 (26.09.2021): 1159. http://dx.doi.org/10.3390/catal11101159.
Pełny tekst źródłaKwak, Ja Hun, Libor Kovarik i János Szanyi. "Heterogeneous Catalysis on Atomically Dispersed Supported Metals: CO2 Reduction on Multifunctional Pd Catalysts". ACS Catalysis 3, nr 9 (16.08.2013): 2094–100. http://dx.doi.org/10.1021/cs4001392.
Pełny tekst źródłaFernández-Alvarez, Francisco J., Abdullah M. Aitani i Luis A. Oro. "Homogeneous catalytic reduction of CO2 with hydrosilanes". Catal. Sci. Technol. 4, nr 3 (2014): 611–24. http://dx.doi.org/10.1039/c3cy00948c.
Pełny tekst źródłaGuo, Mengquan, Xiangxiang Li, Yuxin Huang, Linfa Li, Jixiao Li, Yiren Lu, Yanhong Xu i Lihong Zhang. "CO2-Induced Fibrous Zn Catalyst Promotes Electrochemical Reduction of CO2 to CO". Catalysts 11, nr 4 (8.04.2021): 477. http://dx.doi.org/10.3390/catal11040477.
Pełny tekst źródłaLi, Xiangxiang, Shuling Chang, Yanting Wang i Lihong Zhang. "Silver-Carbonaceous Microsphere Precursor-Derived Nano-Coral Ag Catalyst for Electrochemical Carbon Dioxide Reduction". Catalysts 12, nr 5 (23.04.2022): 479. http://dx.doi.org/10.3390/catal12050479.
Pełny tekst źródłaRahmati, Farnood, Negar Sabouhanian, Jacek Lipkowski i Aicheng Chen. "Synthesis of 3D Porous Cu Nanostructures on Ag Thin Film Using Dynamic Hydrogen Bubble Template for Electrochemical Conversion of CO2 to Ethanol". Nanomaterials 13, nr 4 (20.02.2023): 778. http://dx.doi.org/10.3390/nano13040778.
Pełny tekst źródłaReisner, Erwin. "(Keynote) Reversible CO2 Reduction Electrocatalysis in Solar-Powered Chemistry". ECS Meeting Abstracts MA2023-02, nr 52 (22.12.2023): 2517. http://dx.doi.org/10.1149/ma2023-02522517mtgabs.
Pełny tekst źródłaLi, Qianwen, Mei Li, Shengbo Zhang, Xiao Liu, Xinli Zhu, Qingfeng Ge i Hua Wang. "Tuning Sn-Cu Catalysis for Electrochemical Reduction of CO2 on Partially Reduced Oxides SnOx-CuOx-Modified Cu Electrodes". Catalysts 9, nr 5 (22.05.2019): 476. http://dx.doi.org/10.3390/catal9050476.
Pełny tekst źródłaCai, Fan, Dunfeng Gao, Hu Zhou, Guoxiong Wang, Ting He, Huimin Gong, Shu Miao, Fan Yang, Jianguo Wang i Xinhe Bao. "Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction". Chemical Science 8, nr 4 (2017): 2569–73. http://dx.doi.org/10.1039/c6sc04966d.
Pełny tekst źródłaZhang, Hanguang, John Weiss, Luigi Osmieri i Piotr Zelenay. "M-N-C-Supported Catalysts for Carbon Dioxide Reduction Reaction". ECS Meeting Abstracts MA2023-01, nr 26 (28.08.2023): 1703. http://dx.doi.org/10.1149/ma2023-01261703mtgabs.
Pełny tekst źródłaTawil, Sumana, Hathaichanok Seelajaroen, Amorn Petsom, Niyazi Serdar Sariciftci i Patchanita Thamyongkit. "Clam-shaped cyclam-functionalized porphyrin for electrochemical reduction of carbon dioxide". Journal of Porphyrins and Phthalocyanines 23, nr 04n05 (kwiecień 2019): 453–61. http://dx.doi.org/10.1142/s1088424619500548.
Pełny tekst źródłaManan, Wan Nabilah, Wan Nor Roslam Wan Isahak i Zahira Yaakob. "CeO2-Based Heterogeneous Catalysts in Dry Reforming Methane and Steam Reforming Methane: A Short Review". Catalysts 12, nr 5 (19.04.2022): 452. http://dx.doi.org/10.3390/catal12050452.
Pełny tekst źródłaCui, Yan, Pengxiang Ge, Mindong Chen i Leilei Xu. "Research Progress in Semiconductor Materials with Application in the Photocatalytic Reduction of CO2". Catalysts 12, nr 4 (24.03.2022): 372. http://dx.doi.org/10.3390/catal12040372.
Pełny tekst źródłaTian, Pengfei, Bo Zhang, Jiacheng Chen, Jing Zhang, Libei Huang, Ruquan Ye, Bo Bao i Minghui Zhu. "Curvature-induced electronic tuning of molecular catalysts for CO2 reduction". Catalysis Science & Technology 11, nr 7 (2021): 2491–96. http://dx.doi.org/10.1039/d0cy01589j.
Pełny tekst źródłaWang, Luhui, Junang Hu, Hui Liu, Qinhong Wei, Dandan Gong, Liuye Mo, Hengcong Tao i Chengyang Zhang. "Three-Dimensional Mesoporous Ni-CeO2 Catalysts with Ni Embedded in the Pore Walls for CO2 Methanation". Catalysts 10, nr 5 (8.05.2020): 523. http://dx.doi.org/10.3390/catal10050523.
Pełny tekst źródłaDharmasaroja, Nichthima, Tanakorn Ratana, Sabaithip Tungkamani, Thana Sornchamni, David S. A. Simakov i Monrudee Phongaksorn. "The Effects of CeO2 and Co Doping on the Properties and the Performance of the Ni/Al2O3-MgO Catalyst for the Combined Steam and CO2 Reforming of Methane Using Ultra-Low Steam to Carbon Ratio". Catalysts 10, nr 12 (11.12.2020): 1450. http://dx.doi.org/10.3390/catal10121450.
Pełny tekst źródłaHong, Xiaolei, Haiyan Zhu, Dianchen Du, Quanshen Zhang i Yawei Li. "Research Progress of Copper-Based Bimetallic Electrocatalytic Reduction of CO2". Catalysts 13, nr 2 (9.02.2023): 376. http://dx.doi.org/10.3390/catal13020376.
Pełny tekst źródłaLeung, Chi-Fai, i Pui-Yu Ho. "Molecular Catalysis for Utilizing CO2 in Fuel Electro-Generation and in Chemical Feedstock". Catalysts 9, nr 9 (10.09.2019): 760. http://dx.doi.org/10.3390/catal9090760.
Pełny tekst źródłaLiu, Di-Jia. "(Invited) Understanding the Electrocatalytic Mechanisms of Oxygen and Carbon Dioxide Reduction Reactions". ECS Meeting Abstracts MA2022-01, nr 35 (7.07.2022): 1468. http://dx.doi.org/10.1149/ma2022-01351468mtgabs.
Pełny tekst źródłaCai, Fan, Dunfeng Gao, Hu Zhou, Guoxiong Wang, Ting He, Huimin Gong, Shu Miao, Fan Yang, Jianguo Wang i Xinhe Bao. "Correction: Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction". Chemical Science 8, nr 4 (2017): 3277. http://dx.doi.org/10.1039/c7sc90011b.
Pełny tekst źródłaChen, Pengfei, Yiao Huang, Zuhao Shi, Xingzhu Chen i Neng Li. "Improving the Catalytic CO2 Reduction on Cs2AgBiBr6 by Halide Defect Engineering: A DFT Study". Materials 14, nr 10 (11.05.2021): 2469. http://dx.doi.org/10.3390/ma14102469.
Pełny tekst źródłaWang, Nannan, Wenbin Jiang, Jing Yang, Haisong Feng, Youbin Zheng, Sheng Wang, Bofan Li i in. "Contact-electro-catalytic CO2 reduction from ambient air". Nature Communications 15, nr 1 (13.07.2024). http://dx.doi.org/10.1038/s41467-024-50118-1.
Pełny tekst źródłaYun, Ruirui, Beibei Zhang, Ruiming Xu, Shichang Song, Junjie Mao i Zhaoxu Wang. "Atomically Dispersed Copper Catalysts for Highly Selective CO2 Reduction". Inorganic Chemistry Frontiers, 2022. http://dx.doi.org/10.1039/d2qi02288e.
Pełny tekst źródłaWang, Hongming, Liming Hong, Xian Liu, Baozhu Chi i Guomin Xia. "Diatomic Molecule Catalysts toward Synergistic Electrocatalytic Carbon Dioxide Reduction". Journal of Materials Chemistry A, 2023. http://dx.doi.org/10.1039/d2ta09831h.
Pełny tekst źródła