Gotowa bibliografia na temat „CO2 reduction catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CO2 reduction catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CO2 reduction catalysis"
Dagorne, Samuel. "Recent Developments on N-Heterocyclic Carbene Supported Zinc Complexes: Synthesis and Use in Catalysis". Synthesis 50, nr 18 (28.06.2018): 3662–70. http://dx.doi.org/10.1055/s-0037-1610088.
Pełny tekst źródłaTian, Jindan, Ru Han, Qiangsheng Guo, Zhe Zhao i Na Sha. "Direct Conversion of CO2 into Hydrocarbon Solar Fuels by a Synergistic Photothermal Catalysis". Catalysts 12, nr 6 (2.06.2022): 612. http://dx.doi.org/10.3390/catal12060612.
Pełny tekst źródłaSrivastava, Sumit, Manvender S. Dagur, Afsar Ali i Rajeev Gupta. "Trinuclear {Co2+–M3+–Co2+} complexes catalyze reduction of nitro compounds". Dalton Transactions 44, nr 40 (2015): 17453–61. http://dx.doi.org/10.1039/c5dt03442f.
Pełny tekst źródłaLisovski, Oleg, Sergei Piskunov, Dmitry Bocharov, Yuri Zhukovskii, Janis Kleperis, Ainars Knoks i Peteris Lesnicenoks. "CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations". Crystals 12, nr 2 (28.01.2022): 194. http://dx.doi.org/10.3390/cryst12020194.
Pełny tekst źródłaPetersen, Haley A., Tessa H. T. Myren i Oana R. Luca. "Redox-Active Manganese Pincers for Electrocatalytic CO2 Reduction". Inorganics 8, nr 11 (11.11.2020): 62. http://dx.doi.org/10.3390/inorganics8110062.
Pełny tekst źródłaHahn, Christopher. "(Invited) Steering Electrocatalytic CO2 Reduction Reactivity Using Microenvironments". ECS Meeting Abstracts MA2022-02, nr 49 (9.10.2022): 1879. http://dx.doi.org/10.1149/ma2022-02491879mtgabs.
Pełny tekst źródłaCao, Yanwei, Qiongyao Chen, Chaoren Shen i Lin He. "Polyoxometalate-Based Catalysts for CO2 Conversion". Molecules 24, nr 11 (30.05.2019): 2069. http://dx.doi.org/10.3390/molecules24112069.
Pełny tekst źródłaZhou, Yiying, Junxi Cai, Yuming Sun, Shuhan Jia, Zhonghuan Liu, Xu Tang, Bo Hu, Yue Zhang, Yan Yan i Zhi Zhu. "Research on Cu-Site Modification of g-C3N4/CeO2-like Z-Scheme Heterojunction for Enhancing CO2 Reduction and Mechanism Insight". Catalysts 14, nr 8 (20.08.2024): 546. http://dx.doi.org/10.3390/catal14080546.
Pełny tekst źródłaXue, Sensen, Xingyou Liang, Qing Zhang, Xuefeng Ren, Liguo Gao, Tingli Ma i Anmin Liu. "Density Functional Theory Study of CuAg Bimetal Electrocatalyst for CO2RR to Produce CH3OH". Catalysts 14, nr 1 (20.12.2023): 7. http://dx.doi.org/10.3390/catal14010007.
Pełny tekst źródłaHall, Anthony Shoji, Youngmin Yoon, Anna Wuttig i Yogesh Surendranath. "Mesostructure-Induced Selectivity in CO2 Reduction Catalysis". Journal of the American Chemical Society 137, nr 47 (18.11.2015): 14834–37. http://dx.doi.org/10.1021/jacs.5b08259.
Pełny tekst źródłaRozprawy doktorskie na temat "CO2 reduction catalysis"
Smith, Adrien. "Activation and reduction of CO2 by metalloporphyrin-based molecular catalysts". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASF039.
Pełny tekst źródłaTransforming CO₂ into valuable reduced forms of carbon is an interesting approach towards the recycling of this greenhouse gas, by introducing non-fossil fuel based C1 building blocks back into the carbon cycle. Tetraphenyl iron porphyrins and derivatives have been shown to be efficient and selective molecular catalysts for CO₂ reduction to CO. The introduction of various functions in the second coordination sphere of porphyrins showed great improvements of both the overpotential and the catalytic rates.Inspired by the distal pocket of enzymatic active centers, an iron porphyrin with a carboxylate strap is investigated. Electrochemical, kinetic and computational chemistry studies show that this catalyst operates at a low overpotential, while maintaining high catalytic rates. It is proposed that the carboxylate function, initially acting as an axial ligand of the metal, plays an important role in the insertion and transformation of CO₂, in synergy with a water molecule trapped in the superstructure.Furthermore, two iron porphyrins were synthetized bearing an imidazolium group at various positions with respect to the metal center. The original goal of this study was to establish a correlation between the distance of the cationic group from the metal center and the catalytic performances of the catalyst, which can guide the design of new catalysts for CO₂ reduction.The electrochemical study of these catalysts revealed that these imidazolium functions can be electroactive. Electron paramagnetic resonance was used to describe their various reduced forms. These studies revealed and describe the potential electroactive behavior of the imidazolium groups on these novel iron porphyrins catalysts
Afonso, Joana da Costa Franco. "Catalytic hydrogenation of carbon dioxide to form methanol and methane". Master's thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/10854.
Pełny tekst źródłaWoolerton, Thomas William. "Development of enzymatic H2 production and CO2 reduction systems". Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:393741ac-94b1-4d56-b680-d9a434db77e2.
Pełny tekst źródłaPršlja, Paulina. "Theoretical Studies of Single-Site Catalysts for Efficient Electrochemical CO2 Reduction". Doctoral thesis, Universitat Rovira i Virgili, 2021. http://hdl.handle.net/10803/671468.
Pełny tekst źródłaEl desarrollo de la electroquímica tiene el potencial de utilizar el CO2 como materia prima para la producción sostenible de compuestos y materiales y tiene un gran impacto en la industria química. El catalizador “de sitio único” (single site catalyst) es un material prometedor para lograr una elevada actividad y selectividad hacia CO e hidrocarburos C1. La estructura única de este catalizador derivado de carbono reduce la competencia de estos procesos con otros procesos catalíticos como la reacción hydrogen evolution reaction (HER) porque el single site catalyst requiere la unión de hidrógeno en la parte superior. En esta tesis, métodos DFT y conceptos electroquímicos computacionales han sido aplicados para entender los procesos de reducción de CO2. En el capítulo 3 se describe la importancia de las características estructurales del single site catalyst, además de los conceptos relacionados con la química de coordinación que se aplican para comprender la actividad del catalizador en la reacción electroquímica de reducción de CO2 (eCO2RR). El objetivo del capítulo 4 es establecer correlaciones experimentales y teóricas entre las propiedades fisicoquímicas y catalíticas para la eCO2RR hacia CO para el catalizador del MNC. El proceso de reconstrucción de las nanopartículas de Ni mediante la desintegración de Ni(CO)2 en materiales de carbono dopados con N se describe en el capítulo 5. Por último, en el capítulo 6 se describe la selectividad de los productos de reducción de CO2 teniendo en cuenta cómo afecta el potencial y la temperatura sobre el catalizador modelado de CoTPP/MWCNT.
The development of electrochemistry has the potential to use CO2 as a feedstock for the sustainable production of chemicals and materials and it has an important impact on the chemical industry. Single site catalyst is a promising new material for achieving high activity and selectivity towards CO and C1 hydrocarbons. The unique structure of carbon-based catalyst makes it a good compressor of competing Hydrogen evolution reaction (HER) because the single site requires an ontop binding of hydrogen. In this thesis, I applied DFT methods and computational electrochemical concepts for understanding the processes of CO2 reduction (eCO2RR). In chapter 3 I described the importance of single-site structural features catalyst, besides the basic concept of the coordination chemistry that is applied to understand eCO2RR activity of the catalyst. The aim of chapter 4 was to establish experimental and theoretical correlations between physicochemical and catalytic properties for the eCO2RR towards CO for MNC catalyst. The process of reconstruction of Ni nanoparticles by the disintegration of Ni(CO)2 on N-doped carbon materials is described in chapter 5. Finally, in chapter 6 I unraveled the selectivity of CO2 reduction products that were influenced by potential and the temperature over modeled CoTPP/MWCNT catalyst.
Dattila, Federico. "Modelling and mapping pathways of electrochemical CO2 reduction on modified catalytic surfaces". Doctoral thesis, Universitat Rovira i Virgili, 2020. http://hdl.handle.net/10803/670954.
Pełny tekst źródłaLa reducción de CO2 es el único proceso para generar combustibles verdes con un impacto negativo neto en las emisiones de CO2. Por lo tanto, el desarrollo futuro de nuestra sociedad necesita una aplicación industrial de esta tecnología para producir productos químicos de uso intensivo como el etileno. El cobre es un material único para catalizar estos productos, sin embargo, avances significativos en este proceso requieren una comprensión teórica profunda de su complejidad. En esta tesis me propuse desarrollar métodos teóricos para abordar los principales factores involucrados en la reducción de CO2 con cobre: (i) reconstrucción superficial debido a potencial negativo; (ii) efectos químicos sobre la selectividad; y (iii) el efecto del electrolito. Los capítulos I y II se dedicaron a las motivaciones y métodos y el Capítulo 3 a comprobar resultados experimentales bien establecidos. En el capítulo 4 investigué la reconstrucción del cobre policristalino a potenciales negativos. Este proceso está impulsado por la polarización de la superficie, que promueve dominios (100) y defectos. Siguiendo las previsiones teóricas, sinteticé un catalizador a base de cobre eficaz para producir etileno con alto rendimiento. En el Capítulo V, estudié el óxido de cobre para investigar el estado de oxidación del cobre, su coordinación y los sitios superficiales activos hacia la producción de químicos C2+. Entre los resultados, demostré que la polarización impulsa la reducción de CO2, mientras un nuevo intermedio, el glioxilato desprotonado, mejora la selectividad hasta los C2+. En el capítulo VI me dediqué a efectos químicos que influencian la reactividad del cobre. Adatomos de azufre, que actúan como centros de anclaje, permiten la generación de formiato. Finalmente, en el Apéndice A introduje el efecto de los cationes sobre la reducción de CO2, que aún no se comprende completamente, pero tiene una clara relevancia en la distribución del producto.
CO2 reduction is the only process which can generate green fuels with a net negative impact in CO2 emissions. Therefore, the future development of our society needs an industrial scale up of this technology, involving the production of heavily used chemicals such as ethylene. Copper is a unique material for catalyzing these C2+ products, however significant advances need a deep theoretical understanding of the complexity of this material under CO2 reduction conditions. In this thesis I aimed at developing theoretical methods to address the main factors involved in this process: (i) surface reconstruction at negative potential; (ii) chemical effects on copper selectivity; and (iii) the effect of the electrolyte. Chapters I and II were dedicated to the motivations and methods. After having benchmarked in Chapter 3 well-established experimental results, such as the morphology dependence of CO2 product distribution on copper local morphology, I investigated the reconstruction of polycrystalline copper at negative potentials. This process is driven by local surface polarization, which destabilizes close-packed domains and promotes (100) facets and defects. Following theoretical guidelines, I synthesized an effective copper-based catalyst with produced ethylene at high yield and high current density. In Chapter V I studied a complex oxide-derived copper material to provide insights about copper oxidation state, its coordination and surface ensembles active toward C2+ chemicals. Among the outcomes, I demonstrated that polarization drives CO2 reduction activity, whilst a newly reported intermediate, a deprotonated glyoxylate, triggers C2+ selectivity. In chapter VI I dedicated to chemical effects on copper reactivity. Sulfur adatoms, acting as strong tethering centers enable the generation of formate, a chemical employed as preservative for animal food stock. Finally, in Appendix A I introduced cation effect on CO2 reduction, not yet fully understood but having a clear relevance on product distribution.
Fugate, Elizabeth Anne. "Investigation of Electronic Structure Effects of Transition Metal Oxides toward Water Oxidation and CO2 Reduction Catalysis". The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462868623.
Pełny tekst źródłaChakraborty, Sumit. "Homogeneous Catalysis of Nickel Hydride Complexes Bearing a Bis(phosphinite) Pincer Ligand". University of Cincinnati / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1342716471.
Pełny tekst źródłaFrogneux, Xavier. "Transformations réductrices du CO2 pour la formation de liaisons C-N et C-C". Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112136/document.
Pełny tekst źródłaIn the current world, carbon dioxide (CO2) is the major waste of the massive utilization of fossil resources but only few applications have been developed using this compound. In order to take advantage of its abundancy, the development of novel chemical transformation of CO2 to produce fine chemicals is of high interest in the scientific community. In particular, the formation of C-N bond(s) from CO2 and amine compounds unlocks a new way to access high energy and value-added. A second type of highly desirable transformation is the formation of C-C bonds with CO2 so as to synthesize carboxylic acid derivatives. The utilization of hydrosilanes as mild reductants allows the reactions to proceed under 1 bar of CO2 with abundant and cheap metal-based catalysts (iron, zinc) or with organocatalysts. The synthesis of formamides, methylamines and aminals from CO2 are described herein. Ultimately, the catalytic carboxylation of carbosilanes has been achieved for the first time using copper-based complexes. In the specific case of 2-pyridylsilanes, the use of pentavalent fluoride salts allowed us to perform the reaction without catalyst
Giang, Hannah. "Rational Fabrication of Molybdenum Disulfide and Metal-doped Molybdenum Disulfide Thin Films via Electrodeposition Method for Energy Storage, Catalysis, and Biosensor Applications". OpenSIUC, 2020. https://opensiuc.lib.siu.edu/dissertations/1861.
Pełny tekst źródłaKour, Gurpreet. "First principles investigations on transition metal based electrocatalysts for efficient clean energy conversion". Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/232798/1/Gurpreet_Kour_Thesis.pdf.
Pełny tekst źródłaKsiążki na temat "CO2 reduction catalysis"
Weichselbaumer, Melanie. Pyridine-functionalized Polymeric Catalysts for CO2-Reduction. Wiesbaden: Springer Fachmedien Wiesbaden, 2015. http://dx.doi.org/10.1007/978-3-658-10358-3.
Pełny tekst źródłaWeichselbaumer, Melanie. Pyridine-functionalized Polymeric Catalysts for CO2-Reduction. Springer Spektrum, 2015.
Znajdź pełny tekst źródłaWeichselbaumer, Melanie. Pyridine-Functionalized Polymeric Catalysts for CO2-Reduction. Spektrum Akademischer Verlag GmbH, 2015.
Znajdź pełny tekst źródłaIshida, Hitoshi, Charles Machan, Marc Robert i Nobuharu Iwasawa, red. Molecular Catalysts for CO2 Fixation/Reduction. Frontiers Media SA, 2020. http://dx.doi.org/10.3389/978-2-88963-622-8.
Pełny tekst źródłaMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Znajdź pełny tekst źródłaMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Znajdź pełny tekst źródłaMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Incorporated, John, 2022.
Znajdź pełny tekst źródłaMa, Jianmin. Photo- and Electro-Catalytic Processes: WaterSplitting, N2 Fixing, CO2 Reduction. Wiley & Sons, Limited, John, 2021.
Znajdź pełny tekst źródłaPayne, Emma Kate. The synthesis and characterization of novel platinum and palladium diimene compounds for use as anticancer drugs and CO2 reduction catalyst. 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "CO2 reduction catalysis"
Wilcox, Jennifer. "The Role of CO2 Reduction Catalysis in Carbon Capture". W Carbon Capture, 245–55. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2215-0_8.
Pełny tekst źródłaRisbridger, Thomas, i Ross Anderson. "Chapter 2. Bio-inspired and Bio-electrochemical Approaches in CO2 Reduction Catalysis". W Electrochemical Reduction of Carbon Dioxide, 17–62. Cambridge: Royal Society of Chemistry, 2018. http://dx.doi.org/10.1039/9781782623809-00017.
Pełny tekst źródłaGan, Lu, David Jennings, Joseph Laureanti i Anne Katherine Jones. "Biomimetic Complexes for Production of Dihydrogen and Reduction of CO2". W Homo- and Heterobimetallic Complexes in Catalysis, 233–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/3418_2015_146.
Pełny tekst źródłaHaider, Mohd Belal, Mata Mani Tripathi, Zakir Hussain i Rakesh Kumar. "Potential Application of Ionic Liquids and Deep Eutectic Solvents in Reduction of Industrial CO2 Emissions". W Catalysis for Clean Energy and Environmental Sustainability, 643–73. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65021-6_20.
Pełny tekst źródłaSreejith, S. S., Nithya Mohan i M. R. P. Kurup. "Emergent Catalytic Materials Towards CO2 Reduction". W Emerging Materials, 315–60. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1312-9_9.
Pełny tekst źródłaLi, Yuehui, Kathrin Junge i Matthias Beller. "Zinc-Catalyzed Reductions of Unsaturated Compounds". W Zinc Catalysis, 5–32. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527675944.ch2.
Pełny tekst źródłaBonincontro, Danilo, i Elsje Alessandra Quadrelli. "CO2 Reduction Reactions by Rhodium-Based Catalysts". W Topics in Organometallic Chemistry, 263–82. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/3418_2016_172.
Pełny tekst źródłaSubramaniam, Jeevithra Dewi, i Pei Meng Woi. "Recent Advancement of Electrocatalyst System in CO2 Reduction". W Nano-catalysts for Energy Applications, 114–36. Boca Raton: CRC Press, 2021. http://dx.doi.org/10.1201/9781003082729-7.
Pełny tekst źródłaMa, Ming, i Wilson A. Smith. "Nanostructured Catalysts for the Electrochemical Reduction of CO2". W Nanostructure Science and Technology, 337–73. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-59662-4_11.
Pełny tekst źródłaBoddu, Sanyasinaidu, S. T. Nishanthi i Kamalakannan Kailasam. "Visible-Light Heterogeneous Catalysts for Photocatalytic CO2 Reduction". W Visible Light-Active Photocatalysis, 421–46. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2018. http://dx.doi.org/10.1002/9783527808175.ch15.
Pełny tekst źródłaStreszczenia konferencji na temat "CO2 reduction catalysis"
Ly, Khoa Hoang. "Operando Vibrational Spectroelectrochemistry for Studying CO2 Reduction Catalysis Promoted by Molecularly-defined Electrocatalysts". W nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.ngfm.2019.223.
Pełny tekst źródłaLy, Khoa Hoang. "Operando Vibrational Spectroelectrochemistry for Studying CO2 Reduction Catalysis Promoted by Molecularly-defined Electrocatalysts". W nanoGe Fall Meeting 2019. València: Fundació Scito, 2019. http://dx.doi.org/10.29363/nanoge.nfm.2019.223.
Pełny tekst źródłaChai, Rukaun, Yuetian Liu, Qianjun Liu, Xuan He i Pingtian Fan. "Effect and Mechanism of CO2 Electrochemical Reduction for CCUS-EOR". W SPE Annual Technical Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/206135-ms.
Pełny tekst źródłaMorita, Daiki, Yuya Kotani, Qiuyue Zu, Fuka Yoshida, Ratnak Sok i Jin Kusaka. "Acceleration of Fast-SCR Reaction by Eliminating “The Ammonia Blocking Effect”". W CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-37-0001.
Pełny tekst źródłaDomingo Tafalla, Beatriu, Tamal Chatterjee, Federico Franco i Emilio Palomares Gil. "Electro- and Photo-induced Interfacial Charge Transfers in Nanocrystalline Mesoporous TiO2 and TiO2/Iron Porphyrin Sensitized Films Under CO2 Reduction Catalysis". W MATSUS23 & Sustainable Technology Forum València (STECH23). València: FUNDACIO DE LA COMUNITAT VALENCIANA SCITO, 2022. http://dx.doi.org/10.29363/nanoge.matsus.2023.109.
Pełny tekst źródłaTomin, Sebastian, Uwe Wagner i Thomas Koch. "Effect of Dithering on Post-Catalyst Exhaust Gas Composition and on Short Time Regeneration of Deactivated PdO/Al <sub>2</sub> O <sub>3</sub> Catalysts under Real Engine Conditions". W CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2024. http://dx.doi.org/10.4271/2024-37-0002.
Pełny tekst źródłaBerahim, Nor Hafizah, i Akbar Abu Seman. "CO2 Utilization: Converting Waste into Valuable Products". W SPE Asia Pacific Oil & Gas Conference and Exhibition. SPE, 2022. http://dx.doi.org/10.2118/210729-ms.
Pełny tekst źródłaFerreri, Paolo, Giuseppe Cerrelli, Yong Miao, Stefano Pellegrino i Lorenzo Bianchi. "Conventional and Electrically Heated Diesel Oxidation Catalyst Physical Based Modeling". W CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2018. http://dx.doi.org/10.4271/2018-37-0010.
Pełny tekst źródłaPolaert, Isabelle, Bachar Alrafei, Jose Delgado-Liriano i Alain Ledoux. "Synergetic effect of microwave plasma and catalysts in CO2 methanation". W Ampere 2019. Valencia: Universitat Politècnica de València, 2019. http://dx.doi.org/10.4995/ampere2019.2019.9806.
Pełny tekst źródłaHofstetter, Johannes, Paul Boucharel, Frank Atzler i Georg Wachtmeister. "Fuel Consumption and Emission Reduction for Hybrid Electric Vehicles with Electrically Heated Catalyst". W CO2 Reduction for Transportation Systems Conference. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2020. http://dx.doi.org/10.4271/2020-37-0017.
Pełny tekst źródłaRaporty organizacyjne na temat "CO2 reduction catalysis"
Badrinarayanan i Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2012. http://dx.doi.org/10.55274/r0010772.
Pełny tekst źródłaBetley, Theodore, M. Lalonde, G. T. Sazama i A. B. Scharf. Bifunctional Catalysts for CO2 Reduction. Fort Belvoir, VA: Defense Technical Information Center, wrzesień 2014. http://dx.doi.org/10.21236/ada610432.
Pełny tekst źródłaSariciftci, Niyazi Serdar. CO2 Recycling: The Conversion of Renewable Energy into Chemical Fuels. AsiaChem Magazine, listopad 2020. http://dx.doi.org/10.51167/acm00011.
Pełny tekst źródłaSimmons. L51814 Survey Of Dry Low NOx Combustor Experience. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 1999. http://dx.doi.org/10.55274/r0010207.
Pełny tekst źródła