Artykuły w czasopismach na temat „CO oxidation reaction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CO oxidation reaction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Zhou, Xue-Fei, i Jing Liu. "Co(salen) catalysed oxidation of synthetic lignin-like polymer: Co(salen) effects". Chemical Industry 66, nr 5 (2012): 685–92. http://dx.doi.org/10.2298/hemind120124031z.
Pełny tekst źródłaMa, Guoyan, Le Wang, Xiaorong Wang, Lu Li i Hongfei Ma. "CO Oxidation over Alumina-Supported Copper Catalysts". Catalysts 12, nr 9 (10.09.2022): 1030. http://dx.doi.org/10.3390/catal12091030.
Pełny tekst źródłaEid, Kamel, Yahia Ahmad, Assem Mohamed, Anas Elsafy i Siham Al-Qaradawi. "Versatile Synthesis of Pd and Cu Co-Doped Porous Carbon Nitride Nanowires for Catalytic CO Oxidation Reaction". Catalysts 8, nr 10 (22.09.2018): 411. http://dx.doi.org/10.3390/catal8100411.
Pełny tekst źródłaFeitelberg, Alan S., i Sanjay M. Correa. "The Role of Carbon Monoxide in NO2 Plume Formation". Journal of Engineering for Gas Turbines and Power 122, nr 2 (3.01.2000): 287–92. http://dx.doi.org/10.1115/1.483215.
Pełny tekst źródłaDosa, Melodj, Miguel Jose Marin-Figueredo, Enrico Sartoretti, Chiara Novara, Fabrizio Giorgis, Samir Bensaid, Debora Fino, Nunzio Russo i Marco Piumetti. "Cerium-Copper Oxides Synthesized in a Multi-Inlet Vortex Reactor as Effective Nanocatalysts for CO and Ethene Oxidation Reactions". Catalysts 12, nr 4 (23.03.2022): 364. http://dx.doi.org/10.3390/catal12040364.
Pełny tekst źródłaLin, Ken-Huang, Shin-Pon Ju, Jia-Yun Li i Hsin-Tsung Chen. "The CO oxidation mechanism on the W(111) surface and the W helical nanowire investigated by the density functional theory calculation". Physical Chemistry Chemical Physics 18, nr 4 (2016): 3322–30. http://dx.doi.org/10.1039/c5cp05681k.
Pełny tekst źródłaMishchenko, Denis D., Zakhar S. Vinokurov, Tatyana N. Afonasenko, Andrey A. Saraev, Mikhail N. Simonov, Evgeny Yu Gerasimov i Olga A. Bulavchenko. "Insights into the Contribution of Oxidation-Reduction Pretreatment for Mn0.2Zr0.8O2−δ Catalyst of CO Oxidation Reaction". Materials 16, nr 9 (2.05.2023): 3508. http://dx.doi.org/10.3390/ma16093508.
Pełny tekst źródłaBzovska i Mryglod. "Chemical oscillations in catalytic CO oxidation reaction". Condensed Matter Physics 13, nr 3 (2010): 34801. http://dx.doi.org/10.5488/cmp.13.34801.
Pełny tekst źródłaArán-Ais, Rosa M., Francisco J. Vidal-Iglesias, Manuel J. S. Farias, José Solla-Gullón, Vicente Montiel, Enrique Herrero i Juan M. Feliu. "Understanding CO oxidation reaction on platinum nanoparticles". Journal of Electroanalytical Chemistry 793 (maj 2017): 126–36. http://dx.doi.org/10.1016/j.jelechem.2016.09.031.
Pełny tekst źródłaOleksenko, Lyudmila, George Fedorenko, Igor Matushko, Nelly Maksymovych i Inna Vasylenko. "Perspectives for usage of adsorption semiconductor sensors based on Pd/SnO2 in environmental monitoring of carbon monoxide and methane emission". E3S Web of Conferences 280 (2021): 06003. http://dx.doi.org/10.1051/e3sconf/202128006003.
Pełny tekst źródłaHan, Qiuwan, Dongyang Zhang, Jiuli Guo, Baolin Zhu, Weiping Huang i Shoumin Zhang. "Improved Catalytic Performance of Au/α-Fe2O3-Like-Worm Catalyst for Low Temperature CO Oxidation". Nanomaterials 9, nr 8 (3.08.2019): 1118. http://dx.doi.org/10.3390/nano9081118.
Pełny tekst źródłaShi, Xue, Sumin Li, Bao Zhang, Jiao Wang, Xiaochen Xiang, Yifei Zhu, Ke Zhao i in. "The Regulation of O2 Spin State and Direct Oxidation of CO at Room Temperature Using Triboelectric Plasma by Harvesting Mechanical Energy". Nanomaterials 11, nr 12 (16.12.2021): 3408. http://dx.doi.org/10.3390/nano11123408.
Pełny tekst źródłaLiu, Shuo, Yuguo Wu, Chunshan Zhou, Jianming Wu i Yulong Zhang. "Study on the CO Formation Mechanism during Coal Ambient Temperature Oxidation". Energies 13, nr 10 (20.05.2020): 2587. http://dx.doi.org/10.3390/en13102587.
Pełny tekst źródłaLee, Hak Beum, i Hyoung Lim Koh. "CO oxidation Reaction over copper metal oxide catalysts". Journal of the Korean Oil Chemists' Society 33, nr 1 (30.03.2016): 129–35. http://dx.doi.org/10.12925/jkocs.2016.33.1.129.
Pełny tekst źródłaPapadopoulos, Christos, Konstantinos Kappis, Joan Papavasiliou, John Vakros, Marcin Kuśmierz, Wojciech Gac, Yiannis Georgiou, Yiannis Deligiannakis i George Avgouropoulos. "Copper-promoted ceria catalysts for CO oxidation reaction". Catalysis Today 355 (wrzesień 2020): 647–53. http://dx.doi.org/10.1016/j.cattod.2019.06.078.
Pełny tekst źródłaKong, De-Long, Jian-Xun Du, Wei-Ming Chu, Chun-Ying Ma, Jia-Yi Tao i Wen-Hua Feng. "Ag/Pyridine Co-Mediated Oxidative Arylthiocyanation of Activated Alkenes". Molecules 23, nr 10 (22.10.2018): 2727. http://dx.doi.org/10.3390/molecules23102727.
Pełny tekst źródłaObradović, Maja, i Snežana Gojković. "CO tolerant Pt/Ru0.7Ti0.3O2 nanocatalyst for hydrogen oxidation reaction". Zastita materijala 59, nr 2 (2018): 265–72. http://dx.doi.org/10.5937/zasmat1802265o.
Pełny tekst źródłaZhang, Lanjun, Yujia Han, Dexin Xu, Qin Jiang, Haihui Xin, Chenhui Fu i Wenjing He. "Study on the Reaction Path of -CH3 and -CHO Functional Groups during Coal Spontaneous Combustion: Quantum Chemistry and Experimental Research". Energies 15, nr 13 (4.07.2022): 4891. http://dx.doi.org/10.3390/en15134891.
Pełny tekst źródłaLi, Wen Yan, Qiu Luan Chen, Wu Qin, Ning Wang i Jin Lin Lai. "Interaction of CO with CuO and CuO/graphene: Reactions Mechanism and the Formation of CO2". Advanced Materials Research 354-355 (październik 2011): 279–85. http://dx.doi.org/10.4028/www.scientific.net/amr.354-355.279.
Pełny tekst źródłaPola, Josef, Jaroslav Včelák i Zdeněk Chvátal. "Cw CO2 laser driven oxidation of some perhalogenocycloalkenes". Collection of Czechoslovak Chemical Communications 56, nr 2 (1991): 398–405. http://dx.doi.org/10.1135/cccc19910398.
Pełny tekst źródłaTimmer, Phillip, Lorena Glatthaar, Tim Weber i Herbert Over. "Identifying the Active Phase of RuO2 in the Catalytic CO Oxidation Reaction, Employing Operando CO Infrared Spectroscopy and Online Mass Spectrometry". Catalysts 13, nr 8 (1.08.2023): 1178. http://dx.doi.org/10.3390/catal13081178.
Pełny tekst źródłaMiller, Aleksandr, Vasily Kaichev, Igor Prosvirin i Valeriy Bukhtiyarov. "The Investigation of Catalytic Methanol Oxidation on Pt(111) and Pd(111) by X-Ray Photoelectron Spectroscopy and Mass-Spectrometry". Siberian Journal of Physics 4, nr 4 (1.12.2009): 31–41. http://dx.doi.org/10.54362/1818-7919-2009-4-4-31-41.
Pełny tekst źródłaMo, Shengpeng, Qi Zhang, Yuhai Sun, Mingyuan Zhang, Jiaqi Li, Quanming Ren, Mingli Fu, Junliang Wu, Limin Chen i Daiqi Ye. "Gaseous CO and toluene co-oxidation over monolithic core–shell Co3O4-based hetero-structured catalysts". Journal of Materials Chemistry A 7, nr 27 (2019): 16197–210. http://dx.doi.org/10.1039/c9ta03750k.
Pełny tekst źródłaWang, Lei, Wu Qin, Xian Bin Xiao, Zong Ming Zheng, Jun Jiao Zhang, Chang Qing Dong i Yong Ping Yang. "Effect of Co-Doping on Iron-Based Oxygen Carrier for CO Oxidation in Chemical Looping Combustion". Advanced Materials Research 774-776 (wrzesień 2013): 725–28. http://dx.doi.org/10.4028/www.scientific.net/amr.774-776.725.
Pełny tekst źródłaTuraeva, N. "SIZE EFFECTS IN THE D-BAND MODEL OF CO OXIDATION BY GOLD NANOPARTICLES". «Узбекский физический журнал» 20, nr 4 (21.07.2018): 236–42. http://dx.doi.org/10.52304/.v20i4.98.
Pełny tekst źródłaWang, Kejun, i Ping Zhong. "A kinetic study of Co oxidation over the perovskite-like oxide LaSrNio4". Journal of the Serbian Chemical Society 75, nr 2 (2010): 249–58. http://dx.doi.org/10.2298/jsc1002249w.
Pełny tekst źródłaKELLOGG, G. "The oxidation of rhodium field-emitter surfaces during the CO oxidation reaction". Journal of Catalysis 92, nr 1 (marzec 1985): 167–72. http://dx.doi.org/10.1016/0021-9517(85)90246-5.
Pełny tekst źródłaWu, Zhang, Zhang, Duan, Li, Wei, Liu, Yuan, Wang i Hao. "New Insights into the Electrocatalytic Mechanism of Methanol Oxidation on Amorphous Ni-B-Co Nanoparticles in Alkaline Media". Catalysts 9, nr 9 (5.09.2019): 749. http://dx.doi.org/10.3390/catal9090749.
Pełny tekst źródłaDobrosz-Gómez, Izabela, Miguel-Ángel Gómez-García i Jacek Michał Rynkowski. "The Origin of Au/Ce1-xZrxO2 Catalyst’s Active Sites in Low-Temperature CO Oxidation". Catalysts 10, nr 11 (13.11.2020): 1312. http://dx.doi.org/10.3390/catal10111312.
Pełny tekst źródłaLÓPEZ-CARREÑO, L. D. "EFFECTS OF FINITE REACTION RATES ON THE KINETIC PHASE TRANSITIONS IN THE CATALYTIC OXIDATION OF CARBON MONOXIDE". Surface Review and Letters 09, nr 05n06 (październik 2002): 1735–39. http://dx.doi.org/10.1142/s0218625x02004311.
Pełny tekst źródłaFan, Min Hui, Guan Qing Wang, Dan Luo, Ri Zan Li, Ning Ding i Jiang Rong Xu. "Characteristic of Low Calorific Fuel Gas Combustion in Porous Burner by Preheating Air". Applied Mechanics and Materials 624 (sierpień 2014): 361–65. http://dx.doi.org/10.4028/www.scientific.net/amm.624.361.
Pełny tekst źródłaYu, Guo Xian, Qian Zhong, Mei Jin, Jin Huang Wang i Ping Lu. "Deep Desulfurization of Diesel Fuel Oxidized with TBHP Coupled with Solvent Extraction Intensified by Ultrasound". Advanced Materials Research 910 (marzec 2014): 57–60. http://dx.doi.org/10.4028/www.scientific.net/amr.910.57.
Pełny tekst źródłaYao, M., J. Qin i Z. Zheng. "Numerical study of the combustion mechanism of a homogeneous charge compression ignition engine fuelled with dimethyl ether and methane, with a detailed kinetics model". Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 219, nr 10 (1.10.2005): 1213–23. http://dx.doi.org/10.1243/095440705x34810.
Pełny tekst źródłaKo, Eun-Yong, Eun Duck Park, Kyung Won Seo, Hyun Chul Lee, Doohwan Lee i Soonho Kim. "Nanosized Pt-Co Catalysts for the Preferential CO Oxidation". Journal of Nanoscience and Nanotechnology 6, nr 11 (1.11.2006): 3567–71. http://dx.doi.org/10.1166/jnn.2006.17984.
Pełny tekst źródłaBanerjee, Sourav, Gowrav Munithimhaiah Narasimhaiah, Anish Mukhopadhyay i Atanu Bhattacharya. "CO Activation Determines Ultrafast Dynamics of CO Oxidation Reaction on Pd Nanoparticles". Journal of Physical Chemistry C 120, nr 45 (9.11.2016): 25806–21. http://dx.doi.org/10.1021/acs.jpcc.6b07719.
Pełny tekst źródłaUETSUKA, H., K. WATANABE, H. OHNUMA i K. KUNIMORI. "STRUCTURE-SENSITIVITY IN THE DYNAMICS OF CO OXIDATION OVER Pd SURFACES: INFRARED CHEMHEMILUMINESCENCE OF THE PRODUCT CO2". Surface Review and Letters 04, nr 06 (grudzień 1997): 1359–63. http://dx.doi.org/10.1142/s0218625x97001814.
Pełny tekst źródłaFukusumi, Takanori, Natsuki Takei, Yubi Tateno, Takuya Aoki, Ai Ando, Kouhei Kozakai, Hiroko Shima i in. "Ene-thiol reaction of C3-vinylated chlorophyll derivatives in the presence of oxygen: synthesis of C3-formyl-chlorins under mild conditions". Journal of Porphyrins and Phthalocyanines 17, nr 12 (grudzień 2013): 1188–95. http://dx.doi.org/10.1142/s1088424613500983.
Pełny tekst źródłaBowie, John H., Charles H. Depuy, Sally A. Sullivan i Veronica M. Bierbaum. "Gas-phase reactions of the hydroperoxide and peroxyformate anions". Canadian Journal of Chemistry 64, nr 6 (1.06.1986): 1046–50. http://dx.doi.org/10.1139/v86-175.
Pełny tekst źródłaStamenkovic, Vojislav, Berislav Blizanac, Branimir Grgur i Nenad Markovic. "Electrocatalysis of fuel cells reaction on Pt and Pt-bimetallic anode catalysts: A selective review". Chemical Industry 56, nr 6 (2002): 273–86. http://dx.doi.org/10.2298/hemind0206273s.
Pełny tekst źródłaEhsasi, M., S. Rezaie‐Serej, J. H. Block i K. Christmann. "Reaction rate oscillation of CO oxidation on Pt(210)". Journal of Chemical Physics 92, nr 12 (15.06.1990): 7596–609. http://dx.doi.org/10.1063/1.458197.
Pełny tekst źródłaBöttcher, A., H. Niehus, S. Schwegmann, H. Over i G. Ertl. "CO Oxidation Reaction over Oxygen-Rich Ru(0001) Surfaces". Journal of Physical Chemistry B 101, nr 51 (grudzień 1997): 11185–91. http://dx.doi.org/10.1021/jp9726899.
Pełny tekst źródłaPandis, Pavlos K., Dimitris E. Perros i Vassilis N. Stathopoulos. "Doped apatite-type lanthanum silicates in CO oxidation reaction". Catalysis Communications 114 (sierpień 2018): 98–103. http://dx.doi.org/10.1016/j.catcom.2018.06.017.
Pełny tekst źródłaFreund, Hans-Joachim, Gerard Meijer, Matthias Scheffler, Robert Schlögl i Martin Wolf. "CO Oxidation as a Prototypical Reaction for Heterogeneous Processes". Angewandte Chemie International Edition 50, nr 43 (29.09.2011): 10064–94. http://dx.doi.org/10.1002/anie.201101378.
Pełny tekst źródłaConey, Ciaran, Cristina Stere, Paul Millington, Agnes Raj, Sam Wilkinson, Michael Caracotsios, Geoffrey McCullough i in. "Spatially-resolved investigation of the water inhibition of methane oxidation over palladium". Catalysis Science & Technology 10, nr 6 (2020): 1858–74. http://dx.doi.org/10.1039/d0cy00154f.
Pełny tekst źródłaErasmus, Johannes, i Jeanet Conradie. "Oxidative addition of methyl iodide to [Rh(PhCOCHCOPh)(CO)(P(OCH2)3CCH3)]: an experimental and computational study". Open Chemistry 10, nr 1 (1.02.2012): 256–66. http://dx.doi.org/10.2478/s11532-011-0137-0.
Pełny tekst źródłaSchubert, M. M., T. P. Häring, G. Bräth, H. A. Gasteiger i R. J. Behm. "New DRIFTS Cell Design for the Simultaneous Acquisition of IR Spectra and Kinetic Data Using On-Line Product Analysis". Applied Spectroscopy 55, nr 11 (listopad 2001): 1537–43. http://dx.doi.org/10.1366/0003702011953775.
Pełny tekst źródłaTodorova, Totka, Petya Petrova i Yuri Kalvachev. "Catalytic Oxidation of CO and Benzene over Metal Nanoparticles Loaded on Hierarchical MFI Zeolite". Molecules 26, nr 19 (28.09.2021): 5893. http://dx.doi.org/10.3390/molecules26195893.
Pełny tekst źródłaPeng, Anyang, Mayfair C. Kung, Robert R. O. Brydon, Matthew O. Ross, Linping Qian, Linda J. Broadbelt i Harold H. Kung. "Noncontact catalysis: Initiation of selective ethylbenzene oxidation by Au cluster-facilitated cyclooctene epoxidation". Science Advances 6, nr 5 (styczeń 2020): eaax6637. http://dx.doi.org/10.1126/sciadv.aax6637.
Pełny tekst źródłaChen, Hao, Yun Liu, Fan Yang, Mingming Wei, Xinfei Zhao, Yanxiao Ning, Qingfei Liu, Yi Zhang, Qiang Fu i Xinhe Bao. "Active Phase of FeOx/Pt Catalysts in Low-Temperature CO Oxidation and Preferential Oxidation of CO Reaction". Journal of Physical Chemistry C 121, nr 19 (4.05.2017): 10398–405. http://dx.doi.org/10.1021/acs.jpcc.7b01392.
Pełny tekst źródłaLee, Jyh-Wei, i Jenq-Gong Duh. "High-temperature MgO–C–Al refractories–metal reactions in high-aluminum-content alloy steels". Journal of Materials Research 18, nr 8 (sierpień 2003): 1950–59. http://dx.doi.org/10.1557/jmr.2003.0271.
Pełny tekst źródła