Artykuły w czasopismach na temat „CO Oxidation Catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CO Oxidation Catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Dobrosz-Gómez, Izabela, Miguel-Ángel Gómez-García i Jacek Michał Rynkowski. "The Origin of Au/Ce1-xZrxO2 Catalyst’s Active Sites in Low-Temperature CO Oxidation". Catalysts 10, nr 11 (13.11.2020): 1312. http://dx.doi.org/10.3390/catal10111312.
Pełny tekst źródłaGriffith, William P., i Maria Suriaatmaja. "Studies on transition-metal nitrido and oxo complexes. Part 20. Oxoruthenates and oxo-osmates in oxidation catalysis; cis-[Os(OH)2O4]2- as a catalytic oxidant for primary amines and for alcohols". Canadian Journal of Chemistry 79, nr 5-6 (1.05.2001): 598–606. http://dx.doi.org/10.1139/v00-181.
Pełny tekst źródłaAl Soubaihi, Rola, Khaled Saoud i Joydeep Dutta. "Critical Review of Low-Temperature CO Oxidation and Hysteresis Phenomenon on Heterogeneous Catalysts". Catalysts 8, nr 12 (14.12.2018): 660. http://dx.doi.org/10.3390/catal8120660.
Pełny tekst źródłaAl Soubaihi, Rola Mohammad, Khaled Mohammad Saoud, Myo Tay Zar Myint, Mats A. Göthelid i Joydeep Dutta. "CO Oxidation Efficiency and Hysteresis Behavior over Mesoporous Pd/SiO2 Catalyst". Catalysts 11, nr 1 (16.01.2021): 131. http://dx.doi.org/10.3390/catal11010131.
Pełny tekst źródłaXanthopouloua, G. G., V. A. Novikova, Yu A. Knysha i A. P. Amosova. "Nanocatalysts for Low-Temperature Oxidation of CO: Review". Eurasian Chemico-Technological Journal 17, nr 1 (19.12.2014): 17. http://dx.doi.org/10.18321/ectj190.
Pełny tekst źródłaŠmíd, Bretislav, Toshiyuki Mori, M. Takahashi, Ding Rong Ou, V. Matolín i Iva Matolínova. "Fabrication and Microanalysis of Nano-Structured CuOX-CeO2 Catalysts for CO Oxidation Reaction". Advanced Materials Research 15-17 (luty 2006): 261–66. http://dx.doi.org/10.4028/www.scientific.net/amr.15-17.261.
Pełny tekst źródłaLiu, Jin-Xun, Zhiling Liu, Ivo A. W. Filot, Yaqiong Su, Ionut Tranca i Emiel J. M. Hensen. "CO oxidation on Rh-doped hexadecagold clusters". Catalysis Science & Technology 7, nr 1 (2017): 75–83. http://dx.doi.org/10.1039/c6cy02277d.
Pełny tekst źródłaDosa, Melodj, Miguel Jose Marin-Figueredo, Enrico Sartoretti, Chiara Novara, Fabrizio Giorgis, Samir Bensaid, Debora Fino, Nunzio Russo i Marco Piumetti. "Cerium-Copper Oxides Synthesized in a Multi-Inlet Vortex Reactor as Effective Nanocatalysts for CO and Ethene Oxidation Reactions". Catalysts 12, nr 4 (23.03.2022): 364. http://dx.doi.org/10.3390/catal12040364.
Pełny tekst źródłaChenouf, Meriem, Cristina Megías-Sayago, Fatima Ammari, Svetlana Ivanova, Miguel Centeno i José Odriozola. "Immobilization of Stabilized Gold Nanoparticles on Various Ceria-Based Oxides: Influence of the Protecting Agent on the Glucose Oxidation Reaction". Catalysts 9, nr 2 (31.01.2019): 125. http://dx.doi.org/10.3390/catal9020125.
Pełny tekst źródłaKappis, Konstantinos, Christos Papadopoulos, Joan Papavasiliou, John Vakros, Yiannis Georgiou, Yiannis Deligiannakis i George Avgouropoulos. "Tuning the Catalytic Properties of Copper-Promoted Nanoceria via a Hydrothermal Method". Catalysts 9, nr 2 (1.02.2019): 138. http://dx.doi.org/10.3390/catal9020138.
Pełny tekst źródłaMaksimchuk, Nataliya V., Olga V. Zalomaeva, Igor Y. Skobelev, Konstantin A. Kovalenko, Vladimir P. Fedin i Oxana A. Kholdeeva. "Metal–organic frameworks of the MIL-101 family as heterogeneous single-site catalysts". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 468, nr 2143 (14.03.2012): 2017–34. http://dx.doi.org/10.1098/rspa.2012.0072.
Pełny tekst źródłaSaikia, Pranjal, Abu Taleb Miah, Banajit Malakar i Ankur Bordoloi. "Enhanced Catalytic Activity of Supported Gold Catalysts for Oxidation of Noxious Environmental Pollutant CO". Indian Journal of Materials Science 2015 (27.08.2015): 1–10. http://dx.doi.org/10.1155/2015/658346.
Pełny tekst źródłaMohamed, Ziyaad, Venkata D. B. C. Dasireddy, Sooboo Singh i Holger B. Friedrich. "The Mitigation of CO Present in the Water–Gas Shift Reformate Gas over IR-TiO2 and IR-ZrO2 Catalysts". Catalysts 11, nr 11 (15.11.2021): 1378. http://dx.doi.org/10.3390/catal11111378.
Pełny tekst źródłaSchmal, Martin, i Hans-Joachim Freund. "Towards an atomic level understanding of niobia based catalysts and catalysis by combining the science of catalysis with surface science". Anais da Academia Brasileira de Ciências 81, nr 2 (czerwiec 2009): 297–318. http://dx.doi.org/10.1590/s0001-37652009000200016.
Pełny tekst źródłaLi, Wei-Jing, Shu Tsai i Ming-Yen Wey. "Positive effects of a halloysite-supported Cu/Co catalyst fabricated by a urea-driven deposition precipitation method on the CO-SCR reaction and SO2 poisoning". Catalysis Science & Technology 11, nr 10 (2021): 3456–65. http://dx.doi.org/10.1039/d0cy02261f.
Pełny tekst źródłaMardwita, Mardwita, Eka Sri Yusmartini i Nidya Wisudawati. "Effects of Cobalt and Chromium Loadings to The Catalytic Activities of Supported Metal Catalysts in Methane Oxidation". Bulletin of Chemical Reaction Engineering & Catalysis 15, nr 1 (15.01.2020): 213–20. http://dx.doi.org/10.9767/bcrec.15.1.6320.213-220.
Pełny tekst źródłaCui, Yan, Leilei Xu, Mindong Chen, Chufei Lv, Xinbo Lian, Cai-e. Wu, Bo Yang, Zhichao Miao, Fagen Wang i Xun Hu. "CO Oxidation over Metal Oxide (La2O3, Fe2O3, PrO2, Sm2O3, and MnO2) Doped CuO-Based Catalysts Supported on Mesoporous Ce0.8Zr0.2O2 with Intensified Low-Temperature Activity". Catalysts 9, nr 9 (28.08.2019): 724. http://dx.doi.org/10.3390/catal9090724.
Pełny tekst źródłaKonsolakis, Michalis, i Maria Lykaki. "Facet-Dependent Reactivity of Ceria Nanoparticles Exemplified by CeO2-Based Transition Metal Catalysts: A Critical Review". Catalysts 11, nr 4 (31.03.2021): 452. http://dx.doi.org/10.3390/catal11040452.
Pełny tekst źródłaLiu, Yuxi, Guofeng Zhao, Dingsheng Wang i Yadong Li. "Heterogeneous catalysis for green chemistry based on nanocrystals". National Science Review 2, nr 2 (30.04.2015): 150–66. http://dx.doi.org/10.1093/nsr/nwv014.
Pełny tekst źródłaPopovic, Ksenija, i Jelena Lovic. "Formic acid oxidation at platinum-bismuth catalysts". Journal of the Serbian Chemical Society 80, nr 10 (2015): 1217–49. http://dx.doi.org/10.2298/jsc150318044p.
Pełny tekst źródłaIqbal, Zahoor, Muhammad Sufaid Khan, Rozina Khattak, Tausif Iqbal, Ivar Zekker, Muhammad Zahoor, Helal F. Hetta, Gaber El-Saber Batiha i Eida M. Alshammari. "Selective Oxidation of Cinnamyl Alcohol to Cinnamaldehyde over Functionalized Multi-Walled Carbon Nanotubes Supported Silver-Cobalt Nanoparticles". Catalysts 11, nr 7 (19.07.2021): 863. http://dx.doi.org/10.3390/catal11070863.
Pełny tekst źródłaDreyer, Maik, Moritz Krebs, Sharif Najafishirtari, Anna Rabe, Klaus Friedel Ortega i Malte Behrens. "The Effect of Co Incorporation on the CO Oxidation Activity of LaFe1−xCoxO3 Perovskites". Catalysts 11, nr 5 (27.04.2021): 550. http://dx.doi.org/10.3390/catal11050550.
Pełny tekst źródłaKAZUSAKA, A. "Catalysis on Mo(CO)6-derived supported molybdenum catalysts: CO oxidation with N2O". Journal of Catalysis 111, nr 1 (maj 1988): 50–58. http://dx.doi.org/10.1016/0021-9517(88)90064-4.
Pełny tekst źródłaLi, Jing-Jing, Bao-Lin Zhu, Gui-Chang Wang, Zun-Feng Liu, Wei-Ping Huang i Shou-Min Zhang. "Enhanced CO catalytic oxidation over an Au–Pt alloy supported on TiO2 nanotubes: investigation of the hydroxyl and Au/Pt ratio influences". Catalysis Science & Technology 8, nr 23 (2018): 6109–22. http://dx.doi.org/10.1039/c8cy01642a.
Pełny tekst źródłaDey, Subhashish, Ganesh Chandra Dhal, Devendra Mohan i Ram Prasad. "Effect of Preparation Conditions on the Catalytic Activity of CuMnOx Catalysts for CO Oxidation". Bulletin of Chemical Reaction Engineering & Catalysis 12, nr 3 (28.10.2017): 437. http://dx.doi.org/10.9767/bcrec.12.3.900.437-451.
Pełny tekst źródłaMouanni, Sihem, Tassadit Mazari, Sihem Benadji, Leila Dermeche, Catherine Marchal-Roch i Cherifa Rabia. "Simple and Green Adipic Acid Synthesis from Cyclohexanone and/or Cyclohexanol Oxidation with Efficient (NH4)xHyMzPMo12O40 (M: Fe, Co, Ni) Catalysts". Bulletin of Chemical Reaction Engineering & Catalysis 13, nr 2 (11.06.2018): 386. http://dx.doi.org/10.9767/bcrec.13.2.1749.386-392.
Pełny tekst źródłaDang, Shuailin. "Oxidation of CO in three-way catalytic converter through single-atom catalysis". Applied and Computational Engineering 7, nr 1 (21.07.2023): 125–30. http://dx.doi.org/10.54254/2755-2721/7/20230383.
Pełny tekst źródłaLiu, Xin, Xin Zhang i Changgong Meng. "Coadsorption Interfered CO Oxidation over Atomically Dispersed Au on h-BN". Molecules 27, nr 11 (5.06.2022): 3627. http://dx.doi.org/10.3390/molecules27113627.
Pełny tekst źródłaWang, Nan, Shan Wang, Jie Yang, Ping Xiao i Junjiang Zhu. "Promotion Effect of Ce Doping on Catalytic Performance of LaMnO3 for CO Oxidation". Catalysts 12, nr 11 (10.11.2022): 1409. http://dx.doi.org/10.3390/catal12111409.
Pełny tekst źródłaYang, Hao, Fusheng Li, Shaoqi Zhan, Yawen Liu, Wenlong Li, Qijun Meng, Alexander Kravchenko i in. "Intramolecular hydroxyl nucleophilic attack pathway by a polymeric water oxidation catalyst with single cobalt sites". Nature Catalysis 5, nr 5 (maj 2022): 414–29. http://dx.doi.org/10.1038/s41929-022-00783-6.
Pełny tekst źródłaRoy, Mouni, Somjyoti Basak i Milan Kanti Naskar. "Bi-template assisted synthesis of mesoporous manganese oxide nanostructures: Tuning properties for efficient CO oxidation". Physical Chemistry Chemical Physics 18, nr 7 (2016): 5253–63. http://dx.doi.org/10.1039/c5cp07295f.
Pełny tekst źródłaSaoud, Khaled Mohammad, i Mohamed Samy El-Shall. "Physical and Chemical Synthesis of Au/CeO2 Nanoparticle Catalysts for Room Temperature CO Oxidation: A Comparative Study". Catalysts 10, nr 11 (20.11.2020): 1351. http://dx.doi.org/10.3390/catal10111351.
Pełny tekst źródłaGenoni, Andrea, Giuseppina La Ganga, Andrea Volpe, Fausto Puntoriero, Marilena Di Valentin, Marcella Bonchio, Mirco Natali i Andrea Sartorel. "Water oxidation catalysis upon evolution of molecular Co(iii) cubanes in aqueous media". Faraday Discussions 185 (2015): 121–41. http://dx.doi.org/10.1039/c5fd00076a.
Pełny tekst źródłaSaha, Subrata, Md Eaqub Ali, Azman Maamor i Wan Jeffery Basirun. "Design and Synthesis of Silica Supported Nanoporous Gold-Palladium Bimetallic Catalyst for Alkyl Benzene Oxidation". Advanced Materials Research 1109 (czerwiec 2015): 444–47. http://dx.doi.org/10.4028/www.scientific.net/amr.1109.444.
Pełny tekst źródłaMihailova, Irena, i Dimitar Mehandjiev. "Catalytic activity of Co-åkermanite and Co-pyroxene in oxidation reactions". Canadian Journal of Chemistry 89, nr 8 (sierpień 2011): 939–47. http://dx.doi.org/10.1139/v11-061.
Pełny tekst źródłaLi, Guobo, Yingying Zhang, Jie Yan, Yiwei Luo, Conghui Wang, Weiwei Feng, Shule Zhang, Wenming Liu, Zehui Zhang i Honggen Peng. "Insights into SnO2 Nanoparticles Supported on Fibrous Mesoporous Silica for CO Catalytic Oxidation". Catalysts 13, nr 8 (26.07.2023): 1156. http://dx.doi.org/10.3390/catal13081156.
Pełny tekst źródłaSui, Chao, LeHong Xing, Xue Cai, Yang Wang, Qi Zhou i Minghao Li. "Co-Supported CeO2Nanoparticles for CO Catalytic Oxidation: Effects of Different Synthesis Methods on Catalytic Performance". Catalysts 10, nr 2 (18.02.2020): 243. http://dx.doi.org/10.3390/catal10020243.
Pełny tekst źródłaLi, Yudong, Michael Hinshelwood i Gottlieb S. Oehrlein. "Investigation of Ni catalyst activation during plasma-assisted methane oxidation". Journal of Physics D: Applied Physics 55, nr 15 (19.01.2022): 155202. http://dx.doi.org/10.1088/1361-6463/ac4724.
Pełny tekst źródłaTodorova, Silviya, Anton Naydenov, Maya Shopska, Hristo Kolev, Iliyana Yordanova i Krasimir Tenchev. "Pt-Modified Nano-Sized Mn2O3 Oxide Prepared from the Mn3O4 Phase with Tetragonal Symmetry for CO Oxidation". Symmetry 14, nr 12 (1.12.2022): 2543. http://dx.doi.org/10.3390/sym14122543.
Pełny tekst źródłaKonsolakis, Michalis, i Maria Lykaki. "Recent Advances on the Rational Design of Non-Precious Metal Oxide Catalysts Exemplified by CuOx/CeO2 Binary System: Implications of Size, Shape and Electronic Effects on Intrinsic Reactivity and Metal-Support Interactions". Catalysts 10, nr 2 (1.02.2020): 160. http://dx.doi.org/10.3390/catal10020160.
Pełny tekst źródłaDong, Ning, Mengyue Chen, Qing Ye, Dan Zhang i Hongxing Dai. "Catalytic Elimination of Carbon Monoxide, Ethyl Acetate, and Toluene over the Ni/OMS-2 Catalysts". Catalysts 11, nr 5 (30.04.2021): 581. http://dx.doi.org/10.3390/catal11050581.
Pełny tekst źródłaZhang, Haiou, Yixin Zhang, Huikang Song, Yan Cui, Yingying Xue, Cai-e. Wu, Chao Pan i in. "Transition Metal (Fe2O3, Co3O4 and NiO)-Promoted CuO-Based α-MnO2 Nanowire Catalysts for Low-Temperature CO Oxidation". Catalysts 13, nr 3 (15.03.2023): 588. http://dx.doi.org/10.3390/catal13030588.
Pełny tekst źródłaJiang, Angran, Zhibo Ren, Yaqi Qu, Yanjun Zhang i Jianwei Li. "Promotional Effect of Pt-Doping on the Catalytic Performance of Pt−CeO2 Catalyst for CO Oxidation". Catalysts 12, nr 5 (9.05.2022): 529. http://dx.doi.org/10.3390/catal12050529.
Pełny tekst źródłaVedyagin, Aleksey A., Vladimir O. Stoyanovskii, Roman M. Kenzhin, Pavel E. Plyusnin, Yury V. Shubin i Alexander M. Volodin. "New Trends in Automotive Exhaust Gas Purification Materials: Improvement of the Support against Stability of the Active Components". Materials Science Forum 950 (kwiecień 2019): 185–89. http://dx.doi.org/10.4028/www.scientific.net/msf.950.185.
Pełny tekst źródłaAli, Asma A., Metwally Madkour, Fakhreia Al Sagheer, Mohamed I. Zaki i Ahmed Abdel Nazeer. "Low-Temperature Catalytic CO Oxidation Over Non-Noble, Efficient Chromia in Reduced Graphene Oxide and Graphene Oxide Nanocomposites". Catalysts 10, nr 1 (11.01.2020): 105. http://dx.doi.org/10.3390/catal10010105.
Pełny tekst źródłaDel Río, José Daniel, Gustavo Andrés Durán, Álvaro Orjuela Londoño, Francisco José Sánchez Castellanos i Carlos Alberto Guerrero Fajardo. "Partial oxidation of methane to formaldehyde on MoO3, Fe2O3 and ferromolybdenum catalysts". Ingeniería e Investigación 27, nr 1 (1.01.2007): 19–24. http://dx.doi.org/10.15446/ing.investig.v27n1.14773.
Pełny tekst źródłaDyakonov, AJ, i EA Robinson. "Low-Temperature Oxidation of CO in Smoke: A Review". Beiträge zur Tabakforschung International/Contributions to Tobacco Research 22, nr 2 (1.07.2006): 89–106. http://dx.doi.org/10.2478/cttr-2013-0820.
Pełny tekst źródłaMEUNIER, B. "Oxidation catalysis". Journal of Porphyrins and Phthalocyanines 04, nr 04 (czerwiec 2000): 353. http://dx.doi.org/10.1002/(sici)1099-1409(200006/07)4:4<353::aid-jpp258>3.0.co;2-9.
Pełny tekst źródłaNiu, Xiaowei, Liang Zhou, Xiaojun Hu i Wei Han. "Mesoporous CexCo1−xCr2O4 spinels: synthesis, characterization and catalytic application in simultaneous removal of soot particulate and NO". RSC Advances 5, nr 65 (2015): 52595–601. http://dx.doi.org/10.1039/c5ra04759e.
Pełny tekst źródłaMa, Guoyan, Le Wang, Xiaorong Wang, Lu Li i Hongfei Ma. "CO Oxidation over Alumina-Supported Copper Catalysts". Catalysts 12, nr 9 (10.09.2022): 1030. http://dx.doi.org/10.3390/catal12091030.
Pełny tekst źródła