Gotowa bibliografia na temat „CO Oxidation Catalysis”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CO Oxidation Catalysis”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CO Oxidation Catalysis"
Dobrosz-Gómez, Izabela, Miguel-Ángel Gómez-García i Jacek Michał Rynkowski. "The Origin of Au/Ce1-xZrxO2 Catalyst’s Active Sites in Low-Temperature CO Oxidation". Catalysts 10, nr 11 (13.11.2020): 1312. http://dx.doi.org/10.3390/catal10111312.
Pełny tekst źródłaGriffith, William P., i Maria Suriaatmaja. "Studies on transition-metal nitrido and oxo complexes. Part 20. Oxoruthenates and oxo-osmates in oxidation catalysis; cis-[Os(OH)2O4]2- as a catalytic oxidant for primary amines and for alcohols". Canadian Journal of Chemistry 79, nr 5-6 (1.05.2001): 598–606. http://dx.doi.org/10.1139/v00-181.
Pełny tekst źródłaAl Soubaihi, Rola, Khaled Saoud i Joydeep Dutta. "Critical Review of Low-Temperature CO Oxidation and Hysteresis Phenomenon on Heterogeneous Catalysts". Catalysts 8, nr 12 (14.12.2018): 660. http://dx.doi.org/10.3390/catal8120660.
Pełny tekst źródłaAl Soubaihi, Rola Mohammad, Khaled Mohammad Saoud, Myo Tay Zar Myint, Mats A. Göthelid i Joydeep Dutta. "CO Oxidation Efficiency and Hysteresis Behavior over Mesoporous Pd/SiO2 Catalyst". Catalysts 11, nr 1 (16.01.2021): 131. http://dx.doi.org/10.3390/catal11010131.
Pełny tekst źródłaXanthopouloua, G. G., V. A. Novikova, Yu A. Knysha i A. P. Amosova. "Nanocatalysts for Low-Temperature Oxidation of CO: Review". Eurasian Chemico-Technological Journal 17, nr 1 (19.12.2014): 17. http://dx.doi.org/10.18321/ectj190.
Pełny tekst źródłaŠmíd, Bretislav, Toshiyuki Mori, M. Takahashi, Ding Rong Ou, V. Matolín i Iva Matolínova. "Fabrication and Microanalysis of Nano-Structured CuOX-CeO2 Catalysts for CO Oxidation Reaction". Advanced Materials Research 15-17 (luty 2006): 261–66. http://dx.doi.org/10.4028/www.scientific.net/amr.15-17.261.
Pełny tekst źródłaLiu, Jin-Xun, Zhiling Liu, Ivo A. W. Filot, Yaqiong Su, Ionut Tranca i Emiel J. M. Hensen. "CO oxidation on Rh-doped hexadecagold clusters". Catalysis Science & Technology 7, nr 1 (2017): 75–83. http://dx.doi.org/10.1039/c6cy02277d.
Pełny tekst źródłaDosa, Melodj, Miguel Jose Marin-Figueredo, Enrico Sartoretti, Chiara Novara, Fabrizio Giorgis, Samir Bensaid, Debora Fino, Nunzio Russo i Marco Piumetti. "Cerium-Copper Oxides Synthesized in a Multi-Inlet Vortex Reactor as Effective Nanocatalysts for CO and Ethene Oxidation Reactions". Catalysts 12, nr 4 (23.03.2022): 364. http://dx.doi.org/10.3390/catal12040364.
Pełny tekst źródłaChenouf, Meriem, Cristina Megías-Sayago, Fatima Ammari, Svetlana Ivanova, Miguel Centeno i José Odriozola. "Immobilization of Stabilized Gold Nanoparticles on Various Ceria-Based Oxides: Influence of the Protecting Agent on the Glucose Oxidation Reaction". Catalysts 9, nr 2 (31.01.2019): 125. http://dx.doi.org/10.3390/catal9020125.
Pełny tekst źródłaKappis, Konstantinos, Christos Papadopoulos, Joan Papavasiliou, John Vakros, Yiannis Georgiou, Yiannis Deligiannakis i George Avgouropoulos. "Tuning the Catalytic Properties of Copper-Promoted Nanoceria via a Hydrothermal Method". Catalysts 9, nr 2 (1.02.2019): 138. http://dx.doi.org/10.3390/catal9020138.
Pełny tekst źródłaRozprawy doktorskie na temat "CO Oxidation Catalysis"
Elias, Joseph Spanjaard. "CO oxidation catalysis with substituted ceria nanoparticles". Thesis, Massachusetts Institute of Technology, 2016. http://hdl.handle.net/1721.1/105024.
Pełny tekst źródłaCataloged from PDF version of thesis.
Includes bibliographical references.
The low-temperature and cost-effective oxidation of carbon monoxide to carbon dioxide remains a fundamental challenge in heterogeneous catalysis that would enable a diverse range of technologies for electrochemical storage and respiratory health. The development of new catalysts is often driven by high-throughput screening and many of the resulting compounds are mixed-phase, which obscures a rigorous identification of active sites and mechanisms at play for catalysis. In this thesis, the preparation of substituted ceria nanoparticles is described to bring about a fundamental understanding of the structure of the active sites, mechanism and design descriptors for CO oxidation on ceria-based catalysts. Monodisperse, single-phase nanoparticles of late first-row transition-metal-substituted ceria (MyCe₁.yO₂-x, M = Mn, Fe, Co, Ni and Cu) are prepared from the controlled pyrolysis of heterobimetallic precursors in amine surfactant solutions. By means of kinetic analyses, X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM), the active site for CO oxidation catalysis is identified as atomically-dispersed, square-planar M³+ and M²+ moieties substituted into the surface of the ceria lattice. The introduction of CuO does not contribute to the catalytic activity of CuyCe₁.yO₂-x, lending support to the hypothesis that the substituted ceria itself is responsible for the catalytic rate enhancement in mixed-phased catalysts like CuO/CeO₂ Under oxygen-rich conditions, the kinetic parameters for CO oxidation are consistent with lattice oxygen from the dispersed copper sites contributing directly to the oxidation of CO in the rate-determining step. In-situ X-ray photoelectron spectroscopy (XPS) and FTIR studies indicate that adsorbed CO can be directly oxidized to CO₂ in the absence of gaseous O₂, while in-situ XAS confirms that electron transfer is localized to the copper sites. XAS studies demonstrate that the reversible reducibility of dispersed copper ions is a contributing factor for the special catalytic activity of CuO/CeO₂ catalysts. The oxygen-ion vacancy formation energy is introduced as an activity descriptor to rationalize trends in the catalytic activities measured for MyCe₁-yO₂-x nanoparticles that span over three orders of magnitude. As such, the DFT-calculated vacancy formation energy serves to guide in the rational design of catalysts through computational, rather than experimental, screening of candidate compounds for CO oxidation catalysis.
by Joseph Spanjaard Elias.
Ph. D. in Inorganic Chemistry
Lee, Seung-Jae. "Development of supported gold catalysts for low temperature CO oxidation". Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.270939.
Pełny tekst źródłaLund, Chistopher D. "Patterns and dynamics in heterogeneous catalysis : CO oxidation an plantinum /". Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC IP addresses, 2000. http://wwwlib.umi.com/cr/ucsd/fullcit?p9961758.
Pełny tekst źródłaWoods, Matthew P. "Activity and Selectivity in Oxidation Catalysis". The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1228175906.
Pełny tekst źródłaMiller, Duane D. "In Situ Infrared Spectroscopy Study of Gold Oxidation Catalysis". University of Akron / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=akron1152205534.
Pełny tekst źródłaJonsson, Daniel. "Evaluation of Non-Noble Metal Catalysts for CO Oxidation". Thesis, KTH, Skolan för kemivetenskap (CHE), 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-207363.
Pełny tekst źródłaWang, Jiamin. "Exploring Strategies to Break Adsorption-Energy Scaling Relations in Catalytic CO Oxidation". Diss., Virginia Tech, 2020. http://hdl.handle.net/10919/96537.
Pełny tekst źródłaDoctor of Philosophy
Catalysis is the process of increasing the chemical reaction rate by lowering down the activation barrier. There are three different types of catalysis including enzyme, homogeneous, and heterogeneous catalysis. Heterogeneous catalytic reactions involve a sequence of elementary steps, e.g., adsorption of reactants onto the solid surface, transformation of adsorbed species, and desorption of the products. However, the existing scaling relations among binding energies of reaction intermediates on various catalytic materials lead to volcano-shaped relationships, which show the reaction activity versus the binding energy of critical intermediates. The optimal catalysts should bind the reaction intermediates neither too strong nor too weak. This is the Sabatier's principle, which provides useful guidance for searching promising catalysts. But it also imposes the constraint on the attainable catalytic performance. How to break the constraint to further improve the catalytic activity is an emerging problem. The recent studies have shown that the hot surface electrons on the metal surfaces induced by the ultra-fast laser can selectively activate the chemical bonds, thus providing a rational approach beyond scaling constraints. Another way to break the scaling constraint is single atom catalysis. The metal oxides are frequently used as the support to stabilize the single metal atoms. The strong interaction between the single metal atoms and the support affects the electronic structure of the catalysts. Thereby catalytic reactions on the single metal atoms catalyst are very different from that on metal surfaces. In my PhD research, we use CO oxidation reaction as a benchmark system, to tailor reaction pathways through those two strategies on 1) Ru(0001) under ultra-fast laser pulse and 2) Ir single metal atoms supported on spinel oxides, to go beyond Sabatier activity volcano in metal catalysis.
Atalik, Bora. "Structure Sensitivity Of Selective Co Oxidation Over Precious Metal Catalysts". Master's thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/2/12605847/index.pdf.
Pełny tekst źródła#947
-Al2O3 catalysts were prepared by incipient wetness method
the particle size of the catalysts was modified by calcination temperature and duration. Therefore, the relative amounts of low and high coordination atoms on the metal particle surface can be changed. Over these catalysts, first, the CO oxidation reaction was studied in the absence of hydrogen. The catalyst having the highest dispersion, i.e., lowest metal particle sizes, had the highest activity as indicated by its lowest light-off temperature. On the other hand, the turnover frequencies (TOF) of the catalysts were increasing with decreasing dispersion. The activation energy of the catalysts were also compared and examined: as the particle size increased, the activation energy decreased. In the second part, preferential oxidation of CO reaction in the presence of hydrogen was studied. Both CO conversion and selectivity first increased with increasing reaction temperature, then exhibited a maximum, and finally decreased. Both CO conversion and selectivity did not show any trend for different dispersed catalysts for &
#955
(2PO2/PCO) was 1. In order to reach a definite conclusion about the structure sensitivity of selective CO oxidation, the experiments with different &
#955
&rsquo
s and space times over the same catalysts should be performed.
Yung, Matthew Maurice. "Oxidation catalysis in environmental applications nitric oxide and carbon monoxide oxidation for the reduction of combustion emissions and purification of hydrogen streams /". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187128442.
Pełny tekst źródłaGrayson, Benjamin Alan. "Application and modeling of TiO2-supported gold nanoparticles for CO preferential oxidation in excess hydrogen". [Tampa, Fla.] : University of South Florida, 2007. http://purl.fcla.edu/usf/dc/et/SFE0002131.
Pełny tekst źródłaKsiążki na temat "CO Oxidation Catalysis"
1851-1941, Miller Isaiah M., i Langley Research Center, red. Optimization of the catalytic oxidation of CO for closed-cycle CO laser applications. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1985.
Znajdź pełny tekst źródłaSchryer, David R. Low-temperature CO-oxidation catalysts for long-life CO2 lasers: Collected papers from an international conference sponsored by the National Aeronautics and Space Administration, Washington, D.C. and the Royal Signals and Radar Establishment, Malvern, United Kingdom, and held at Langley Research Center, Hampton, Virginia, October 17-19, 1989. Hampton, Va: Langley Research Center, 1990.
Znajdź pełny tekst źródłaLeung, Emi. Mechanistic Investigation of Novel Niobium-Based Materials as Enhanced Oxygen Storage Components and Innovative CO Oxidation Catalyst Support for Environmental Emission Control Systems. [New York, N.Y.?]: [publisher not identified], 2016.
Znajdź pełny tekst źródłaRessler, Thorsten. Application of energy-dispersive X-ray absorption spectroscopy in heterogeneous catalysis: Exfoliation of graphite intercalation compounds and oscillatory behaviour in the CO oxidation. 1995.
Znajdź pełny tekst źródłaGardner, Steven Dwayne. High-performance CO oxidation catalysts engineered for CO2 Lasers. 1990.
Znajdź pełny tekst źródłaLow-temperature CO-oxidation catalysts for long-life CO₂ lasers: Collected papers from an international conference sponsored by the National Aeronautics and Space Administration, Washington, D.C., and the Royal Signals and Radar Establishment, Malvern, United Kingdom, and held at Langley Research Center, Hampton, Virginia, October 17-19, 1989. Washington, D.C: National Aeronautics and Space Administration, Office of Management, Scientific and Technical Information Division, 1990.
Znajdź pełny tekst źródłaThe Effects of pretreatment conditions on a Pt/SnO catalyst for the oxidation of CO in CO lasers. [Washington, DC: National Aeronautics and Space Administration, 1989.
Znajdź pełny tekst źródłaCzęści książek na temat "CO Oxidation Catalysis"
Simándi, László I. "Oxidation and Co-Oxidation of Tertiary Phosphines". W Catalysis by Metal Complexes, 363–70. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2850-6_11.
Pełny tekst źródłaRisch, Marcel, Katharina Klingan, Ivelina Zaharieva i Holger Dau. "Water Oxidation by Co-Based Oxides with Molecular Properties". W Molecular Water Oxidation Catalysis, 163–85. Chichester, UK: John Wiley & Sons, Ltd, 2014. http://dx.doi.org/10.1002/9781118698648.ch9.
Pełny tekst źródłaMcCrea, Keith, Jessica Parker i Gabor Somorjai. "High-Pressure CO Dissociation and CO Oxidation Studies on Platinum Single Crystal Surfaces Using Sum Frequency Generation Surface Vibrational Spectroscopy". W Surface Chemistry and Catalysis, 55–78. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4757-6637-0_4.
Pełny tekst źródłaBijsterbosch, J. W., J. C. Muijsers, A. D. van Langeveld, F. Kapteijn i J. A. Moulijn. "In-Situ FTIR Spectroscopy of Cu-Cr Catalysts in CO Oxidation". W Fundamental Aspects of Heterogeneous Catalysis Studied by Particle Beams, 221–26. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5964-7_18.
Pełny tekst źródłaPark, Jeong Young, Kamran Qadir i Sun Mi Kim. "Role of Surface Oxides on Model Nanocatalysts in Catalytic Activity of CO Oxidation". W Current Trends of Surface Science and Catalysis, 145–70. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8742-5_7.
Pełny tekst źródłaAdamian, Victor A., i William H. Gong. "Chemistry and Mechanism of Oxidation ofpara-Xylene to Terephthalic Acid Using Co-Mn-Br Catalyst". W Liquid Phase Aerobic Oxidation Catalysis: Industrial Applications and Academic Perspectives, 41–66. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2016. http://dx.doi.org/10.1002/9783527690121.ch4.
Pełny tekst źródłaLevec, Janez. "Opportunities in Catalytic Reaction Engineering. Examples of Heterogeneous Catalysis in Water Remediation and Preferential CO Oxidation". W Chemical Engineering, 103–24. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470025018.ch5.
Pełny tekst źródłaPong, Wen Yu, Hung Yi Chang, Chia Hung Liang i Huey Ing Chen. "Morphological Effect of CeO2 Nanoparticles on Catalysis of CO Oxidation". W THERMEC 2006 Supplement, 553–58. Stafa: Trans Tech Publications Ltd., 2006. http://dx.doi.org/10.4028/0-87849-429-4.553.
Pełny tekst źródłaDestro, Priscila. "AuCu Nanoparticles Applied on Heterogeneous Catalysis: Studies About the Stability of Nanoparticles Under Redox Pre-treatments and Application in CO Oxidation Reaction". W Colloidal Nanoparticles for Heterogeneous Catalysis, 41–71. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-03550-1_3.
Pełny tekst źródłaCoulstont, George W., i Gary L. Haller. "Is There a Distribution of Transition State Energies in the Reaction Coordinate of CO Oxidation on Pt Foil?" W Fundamental Aspects of Heterogeneous Catalysis Studied by Particle Beams, 145–50. Boston, MA: Springer US, 1991. http://dx.doi.org/10.1007/978-1-4684-5964-7_13.
Pełny tekst źródłaStreszczenia konferencji na temat "CO Oxidation Catalysis"
Depcik, Christopher, Sudarshan Loya i Anand Srinivasan. "Adaptive Carbon Monoxide Kinetics for Exhaust Aftertreatment Modeling". W ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-11173.
Pełny tekst źródłaStrasser, Peter. "Combinatorial Development of Ternary Electrocatalysts for Methanol Oxidation". W ASME 2007 2nd Energy Nanotechnology International Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/enic2007-45060.
Pełny tekst źródłaBeckerle, J. D., M. P. Casassa, R. R. Cavanagh, E. J. Heilweil i J. C. Stephenson. "Ultrafast laser studies of vibrational relaxation on surfaces: CO (v = 1)/Pt(111)". W OSA Annual Meeting. Washington, D.C.: Optica Publishing Group, 1990. http://dx.doi.org/10.1364/oam.1990.fa2.
Pełny tekst źródłaBerry, David A., Dushyant Shekhawat, Todd H. Gardner, Maria Salazar, Daniel J. Haynes i James J. Spivey. "Support Effects for Pt and Rh-Based Catalysts for Partial Oxidation of n-Tetradecane". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97265.
Pełny tekst źródłaPatel, Sanjay, i K. K. Pant. "Hydrogen Production for PEM Fuel Cells via Oxidative Steam Reforming of Methanol Using Cu-Al Catalysts Modified With Ce and Cr". W ASME 2006 4th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2006. http://dx.doi.org/10.1115/fuelcell2006-97209.
Pełny tekst źródłaBuzanowski, Mark A., i Sean P. McMenamin. "Integrated Exhaust System for Simple Cycle Power Plants". W ASME 2010 Power Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/power2010-27310.
Pełny tekst źródłaRaoufi, Arman, Sagar Kapadia i James C. Newman. "Sensitivity Analysis and Computational Optimization of Fuel Reformer". W ASME 2016 14th International Conference on Fuel Cell Science, Engineering and Technology collocated with the ASME 2016 Power Conference and the ASME 2016 10th International Conference on Energy Sustainability. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fuelcell2016-59110.
Pełny tekst źródłaPornsatitworakul, Suwapich, Saowalak Phikulthai, Supawadee Namuangruk i Bundet Boekfa. "Catalytic oxidation of CO with N2O on Fe-porphyrin catalyst". W 2015 International Conference on Science and Technology (TICST). IEEE, 2015. http://dx.doi.org/10.1109/ticst.2015.7369362.
Pełny tekst źródłaRamis, Gianguido, Guido Busca, Tania Montanari, Michele Sisani i Umberto Costantino. "Ni-Co-Zn-Al Catalysts From Hydrotalcite-Like Precursors for Hydrogen Production by Ethanol Steam Reforming". W ASME 2010 8th International Conference on Fuel Cell Science, Engineering and Technology. ASMEDC, 2010. http://dx.doi.org/10.1115/fuelcell2010-33034.
Pełny tekst źródłaManrique Carrera, Arturo, Jeevan Jayasuriya i Torsten Fransson. "Catalytic Partial Oxidation of Natural Gas in Gas Turbine Applications". W ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-95338.
Pełny tekst źródłaRaporty organizacyjne na temat "CO Oxidation Catalysis"
Stevens i Olsen. PR-179-12214-R01 CO Sensor Experimental Evaluation for Catalyst Health Monitoring. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), wrzesień 2014. http://dx.doi.org/10.55274/r0010827.
Pełny tekst źródłaBadrinarayanan i Olsen. PR-179-11201-R01 Performance Evaluation of Multiple Oxidation Catalysts on a Lean Burn Natural Gas Engine. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2012. http://dx.doi.org/10.55274/r0010772.
Pełny tekst źródłaOlsen i Neuner. PR-179-12207-R01 Performance Measurements of Oxidation Catalyst on an Exhaust Slipstream. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), sierpień 2013. http://dx.doi.org/10.55274/r0010800.
Pełny tekst źródłaOlsen. PR-179-10203-R01 Characterization of Oxidation Catalyst Performance - VOCs and Temperature Variation. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2012. http://dx.doi.org/10.55274/r0010753.
Pełny tekst źródłaDefoort, Willson i Olsen. L51849 Performance Evaluation of Exhaust Catalysts During the Initial Aging on Large Industrial Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), czerwiec 2001. http://dx.doi.org/10.55274/r0011213.
Pełny tekst źródłaLyon, Richard K. Development of Catalyst for Selective Reduction of NOx and Oxidation of CO and Hydrocarbons. Fort Belvoir, VA: Defense Technical Information Center, styczeń 1998. http://dx.doi.org/10.21236/ada357610.
Pełny tekst źródłaPlyusnin, Pavel, Yury Shubin, Igor Asanov, Roman Kenzhin, Vladimir Stoyanovskii i Aleksey Vedyagin. Effect of ruthenium addition to palladium-rhodium nanoalloys on their catalytic performance in CO oxidation. Peeref, lipiec 2023. http://dx.doi.org/10.54985/peeref.2307p1690740.
Pełny tekst źródłaRostovschikova, Tatiana, Alexei Vedyagin, Marina Shilina, Sergey Gurevich, Konstantin Maslakov, Denis Yavsin, Grigory Veselov i Vladimir Stoyanovskii. Advantages of laser electrodispersion for the synthesis of CO oxidation catalysts with low loading of precious metals. Peeref, czerwiec 2023. http://dx.doi.org/10.54985/peeref.2306p4533105.
Pełny tekst źródłaRenzas, James R. Rhodium Catalysts in the Oxidation of CO by O2 and NO: Shape, Composition, and Hot Electron Generation. Office of Scientific and Technical Information (OSTI), marzec 2010. http://dx.doi.org/10.2172/983012.
Pełny tekst źródła