Artykuły w czasopismach na temat „CNN MODEL”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CNN MODEL”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Prasad, G. Shyam Chandra, i K. Adi Narayana Reddy. "Sentiment Analysis Using Multi-Channel CNN-LSTM Model". Journal of Advanced Research in Dynamical and Control Systems 11, nr 12-SPECIAL ISSUE (31.12.2019): 489–94. http://dx.doi.org/10.5373/jardcs/v11sp12/20193243.
Pełny tekst źródłaHasan, Moh Arie, Yan Riyanto i Dwiza Riana. "Grape leaf image disease classification using CNN-VGG16 model". Jurnal Teknologi dan Sistem Komputer 9, nr 4 (5.07.2021): 218–23. http://dx.doi.org/10.14710/jtsiskom.2021.14013.
Pełny tekst źródłaChoi, Jiwoo, Sangil Choi i Taewon Kang. "Personal Identification CNN Model using Gait Cycle". Journal of Korean Institute of Information Technology 20, nr 11 (30.11.2022): 127–36. http://dx.doi.org/10.14801/jkiit.2022.20.11.127.
Pełny tekst źródłaSen, Amit Prakash, Nirmal Kumar Rout, Tuhinansu Pradhan i Amrit Mukherjee. "Hybrid Deep CNN Model for the Detection of COVID-19". Indian Journal Of Science And Technology 15, nr 41 (5.11.2022): 2121–28. http://dx.doi.org/10.17485/ijst/v15i41.1421.
Pełny tekst źródłaVyshnavi, Ramineni, i Goo-Rak Kwon. "A Comparative Study of the CNN Model for AD Diagnosis". Korean Institute of Smart Media 12, nr 7 (31.08.2023): 52–58. http://dx.doi.org/10.30693/smj.2023.12.7.52.
Pełny tekst źródłaTajalsir, Mohammed, Susana Mu˜noz Hern´andez i Fatima Abdalbagi Mohammed. "ASERS-CNN: Arabic Speech Emotion Recognition System based on CNN Model". Signal & Image Processing : An International Journal 13, nr 1 (28.02.2022): 45–53. http://dx.doi.org/10.5121/sipij.2022.13104.
Pełny tekst źródłaEt. al., Ms K. N. Rode,. "Unsupervised CNN model for Sclerosis Detection". Turkish Journal of Computer and Mathematics Education (TURCOMAT) 12, nr 2 (10.04.2021): 2577–83. http://dx.doi.org/10.17762/turcomat.v12i2.2223.
Pełny tekst źródłaKamundala, Espoir K., i Chang Hoon Kim. "CNN Model to Classify Malware Using Image Feature". KIISE Transactions on Computing Practices 24, nr 5 (31.05.2018): 256–61. http://dx.doi.org/10.5626/ktcp.2018.24.5.256.
Pełny tekst źródłaLee, Seonggu, i Jitae Shin. "Hybrid Model of Convolutional LSTM and CNN to Predict Particulate Matter". International Journal of Information and Electronics Engineering 9, nr 1 (marzec 2019): 34–38. http://dx.doi.org/10.18178/ijiee.2019.9.1.701.
Pełny tekst źródłaSrinivas, Dr Kalyanapu, i Reddy Dr.B.R.S. "Deep Learning based CNN Optimization Model for MR Braing Image Segmentation". Journal of Advanced Research in Dynamical and Control Systems 11, nr 11 (20.11.2019): 213–20. http://dx.doi.org/10.5373/jardcs/v11i11/20193190.
Pełny tekst źródłaWang, Jinnan, Weiqin Tong i Xiaoli Zhi. "Model Parallelism Optimization for CNN FPGA Accelerator". Algorithms 16, nr 2 (14.02.2023): 110. http://dx.doi.org/10.3390/a16020110.
Pełny tekst źródłaDal Cortivo, Davide, Sara Mandelli, Paolo Bestagini i Stefano Tubaro. "CNN-Based Multi-Modal Camera Model Identification on Video Sequences". Journal of Imaging 7, nr 8 (5.08.2021): 135. http://dx.doi.org/10.3390/jimaging7080135.
Pełny tekst źródłaMukkapati, Naveen, i M. S. Anbarasi. "Brain Tumor Classification Based on Enhanced CNN Model". Revue d'Intelligence Artificielle 36, nr 1 (28.02.2022): 125–30. http://dx.doi.org/10.18280/ria.360114.
Pełny tekst źródłaZhan, Zhiwei, Guoliang Liao, Xiang Ren, Guangsi Xiong, Weilin Zhou, Wenchao Jiang i Hong Xiao. "RA-CNN". International Journal of Software Science and Computational Intelligence 14, nr 1 (1.01.2022): 1–14. http://dx.doi.org/10.4018/ijssci.311446.
Pełny tekst źródłaZhang, Jilin, Lishi Ye i Yongzeng Lai. "Stock Price Prediction Using CNN-BiLSTM-Attention Model". Mathematics 11, nr 9 (23.04.2023): 1985. http://dx.doi.org/10.3390/math11091985.
Pełny tekst źródłaSlavova, Angela, i Ronald Tetzlaff. "Edge of chaos in reaction diffusion CNN model". Open Mathematics 15, nr 1 (2.02.2017): 21–29. http://dx.doi.org/10.1515/math-2017-0002.
Pełny tekst źródłaZhao, Xinzhuo, Shouliang Qi, Baihua Zhang, He Ma, Wei Qian, Yudong Yao i Jianjun Sun. "Deep CNN models for pulmonary nodule classification: Model modification, model integration, and transfer learning". Journal of X-Ray Science and Technology 27, nr 4 (4.09.2019): 615–29. http://dx.doi.org/10.3233/xst-180490.
Pełny tekst źródłaYin, Qiwei, Ruixun Zhang i XiuLi Shao. "CNN and RNN mixed model for image classification". MATEC Web of Conferences 277 (2019): 02001. http://dx.doi.org/10.1051/matecconf/201927702001.
Pełny tekst źródłaJeong, Jaemin, Ji-Ho Cho i Jeong-Gun Lee. "Filter combination learning for CNN model compression". ICT Express 7, nr 1 (marzec 2021): 5–9. http://dx.doi.org/10.1016/j.icte.2021.01.001.
Pełny tekst źródłaAthavale, Vijay Anant, Suresh Chand Gupta, Deepak Kumar i Savita. "Human Action Recognition Using CNN-SVM Model". Advances in Science and Technology 105 (kwiecień 2021): 282–90. http://dx.doi.org/10.4028/www.scientific.net/ast.105.282.
Pełny tekst źródłaImane, Kadi, Messaoud Abbas, Amara Miloudi i Mohammed Charaf Eddine Meftah. "A CNN Model for Early Leukemia Diagnosis". International Journal of Organizational and Collective Intelligence 12, nr 1 (1.01.2022): 1–20. http://dx.doi.org/10.4018/ijoci.304889.
Pełny tekst źródłaArun Kumar, A., i Radha Krishna Karne. "IIoT-IDS Network using Inception CNN Model". Journal of Trends in Computer Science and Smart Technology 4, nr 3 (18.08.2022): 126–38. http://dx.doi.org/10.36548/jtcsst.2022.3.002.
Pełny tekst źródłaWang, Zhong, i Tong Li. "A Lightweight CNN Model Based on GhostNet". Computational Intelligence and Neuroscience 2022 (31.07.2022): 1–12. http://dx.doi.org/10.1155/2022/8396550.
Pełny tekst źródłaV, Akshatha, i K. R. Sumana. "Analysis of Wildfire Detection using CNN Model". International Journal for Research in Applied Science and Engineering Technology 10, nr 8 (31.08.2022): 241–45. http://dx.doi.org/10.22214/ijraset.2022.46157.
Pełny tekst źródłaSingh, Ajay Kumar, Ihtiram Raza Khan, Shakir Khan, Kumud Pant, Sandip Debnath i Shahajan Miah. "Multichannel CNN Model for Biomedical Entity Reorganization". BioMed Research International 2022 (19.03.2022): 1–11. http://dx.doi.org/10.1155/2022/5765629.
Pełny tekst źródłaKaur, Gagandeep, Ritesh Sinha, Puneet Kumar Tiwari, Srijan Kumar Yadav, Prabhash Pandey, Rohit Raj, Anshu Vashisth i Manik Rakhra. "Face mask recognition system using CNN model". Neuroscience Informatics 2, nr 3 (wrzesień 2022): 100035. http://dx.doi.org/10.1016/j.neuri.2021.100035.
Pełny tekst źródłaYang, Yu-Xin, Chang Wen, Kai Xie, Fang-Qing Wen, Guan-Qun Sheng i Xin-Gong Tang. "Face Recognition Using the SR-CNN Model". Sensors 18, nr 12 (3.12.2018): 4237. http://dx.doi.org/10.3390/s18124237.
Pełny tekst źródłaAl-Hammadi, Muneer, Ghulam Muhammad, Wadood Abdul, Mansour Alsulaiman i M. Shamim Hossain. "Hand Gesture Recognition Using 3D-CNN Model". IEEE Consumer Electronics Magazine 9, nr 1 (1.01.2020): 95–101. http://dx.doi.org/10.1109/mce.2019.2941464.
Pełny tekst źródłaHemmat, Maedeh, i Azadeh Davoodi. "Power-efficient ReRAM-aware CNN model generation". Integration 69 (listopad 2019): 369–80. http://dx.doi.org/10.1016/j.vlsi.2019.08.003.
Pełny tekst źródłaCozzolino, Davide, i Luisa Verdoliva. "Noiseprint: A CNN-Based Camera Model Fingerprint". IEEE Transactions on Information Forensics and Security 15 (2020): 144–59. http://dx.doi.org/10.1109/tifs.2019.2916364.
Pełny tekst źródłaAbdulnabi, Abrar H., Gang Wang, Jiwen Lu i Kui Jia. "Multi-Task CNN Model for Attribute Prediction". IEEE Transactions on Multimedia 17, nr 11 (listopad 2015): 1949–59. http://dx.doi.org/10.1109/tmm.2015.2477680.
Pełny tekst źródłaLei, Xinyu, Hongguang Pan i Xiangdong Huang. "A Dilated CNN Model for Image Classification". IEEE Access 7 (2019): 124087–95. http://dx.doi.org/10.1109/access.2019.2927169.
Pełny tekst źródłaEspejo, S., R. Carmona, R. Domínguez-Castro i A. Rodríguez-Vázquez. "A VLSI-oriented continuous-time CNN model". International Journal of Circuit Theory and Applications 24, nr 3 (maj 1996): 341–56. http://dx.doi.org/10.1002/(sici)1097-007x(199605/06)24:3<341::aid-cta920>3.0.co;2-l.
Pełny tekst źródłaGuo, Kejun, Shizhe Song i Qijia Yang. "CNN-based Model for Face Expression Recognition". Highlights in Science, Engineering and Technology 34 (28.02.2023): 269–74. http://dx.doi.org/10.54097/hset.v34i.5483.
Pełny tekst źródłaHong, Yun-Pyo, Hee-Tak Kim, Seok-Hun Jeon i Tae-Ho Hwang. "Implementation of SNN/CNN Accumulator H/W using LIF/IF Model". Journal of the Institute of Electronics and Information Engineers 59, nr 1 (31.01.2022): 112–17. http://dx.doi.org/10.5573/ieie.2022.59.1.112.
Pełny tekst źródłaPark, Jin Hyeok, Byeong Dae Lee i Myung Hoon Sunwoo. "MaskSLIC based CNN Classification Model for Mammogram Feature Extraction". Journal of the Institute of Electronics and Information Engineers 58, nr 10 (31.10.2021): 59–67. http://dx.doi.org/10.5573/ieie.2021.58.10.59.
Pełny tekst źródłaS, Hemnath, i Geetha Ramalingam. "Comparing the Performance of Accuracy Using 3D CNN Model with the Fixed Spatial Transform With 3D CNN Model for the Detection of Pulmonary Nodules". E3S Web of Conferences 399 (2023): 09003. http://dx.doi.org/10.1051/e3sconf/202339909003.
Pełny tekst źródłaChen, Mei-Hsin, Yao-Chung Chen, Tien-Yin Chou i Fang-Shii Ning. "PM2.5 Concentration Prediction Model: A CNN–RF Ensemble Framework". International Journal of Environmental Research and Public Health 20, nr 5 (24.02.2023): 4077. http://dx.doi.org/10.3390/ijerph20054077.
Pełny tekst źródłaRhanoui, Maryem, Mounia Mikram, Siham Yousfi i Soukaina Barzali. "A CNN-BiLSTM Model for Document-Level Sentiment Analysis". Machine Learning and Knowledge Extraction 1, nr 3 (25.07.2019): 832–47. http://dx.doi.org/10.3390/make1030048.
Pełny tekst źródłaBen Ismail, Mohamed Maher. "Insult detection using a partitional CNN-LSTM model". Computer Science and Information Technologies 1, nr 2 (1.07.2020): 84–92. http://dx.doi.org/10.11591/csit.v1i2.p84-92.
Pełny tekst źródła包, 娜萍. "Bitcoin Price Prediction Based on CNN-LSTM Model". Advances in Applied Mathematics 11, nr 05 (2022): 2956–66. http://dx.doi.org/10.12677/aam.2022.115315.
Pełny tekst źródłaCho, Young-Bok. "Keras based CNN Model for Disease Extraction in Ultrasound Image". Journal of Digital Contents Society 19, nr 10 (31.10.2018): 1975–80. http://dx.doi.org/10.9728/dcs.2018.19.10.1975.
Pełny tekst źródłaNguyen, Thieu, Giang Nguyen i Binh Minh Nguyen. "EO-CNN: An Enhanced CNN Model Trained by Equilibrium Optimization for Traffic Transportation Prediction". Procedia Computer Science 176 (2020): 800–809. http://dx.doi.org/10.1016/j.procs.2020.09.075.
Pełny tekst źródłaWang, Zhaolian, Hong Huang, Rui Du, Xing Li i Guotao Yuan. "IoT Intrusion Detection Model based on CNN-GRU". Frontiers in Computing and Intelligent Systems 4, nr 2 (26.06.2023): 90–95. http://dx.doi.org/10.54097/fcis.v4i2.10302.
Pełny tekst źródłaWang, Haiyao, Jianxuan Wang, Lihui Cao, Yifan Li, Qiuhong Sun i Jingyang Wang. "A Stock Closing Price Prediction Model Based on CNN-BiSLSTM". Complexity 2021 (21.09.2021): 1–12. http://dx.doi.org/10.1155/2021/5360828.
Pełny tekst źródłaPan, Cong, Minyan Lu, Biao Xu i Houleng Gao. "An Improved CNN Model for Within-Project Software Defect Prediction". Applied Sciences 9, nr 10 (24.05.2019): 2138. http://dx.doi.org/10.3390/app9102138.
Pełny tekst źródłaLivieris, Ioannis E., Niki Kiriakidou, Stavros Stavroyiannis i Panagiotis Pintelas. "An Advanced CNN-LSTM Model for Cryptocurrency Forecasting". Electronics 10, nr 3 (26.01.2021): 287. http://dx.doi.org/10.3390/electronics10030287.
Pełny tekst źródłaGunawan, M. Zarlis, P. Sihombing i Sutarman. "Optimization of the CNN model for smart agriculture". IOP Conference Series: Materials Science and Engineering 1088, nr 1 (1.02.2021): 012029. http://dx.doi.org/10.1088/1757-899x/1088/1/012029.
Pełny tekst źródłaIrmak, Emrah. "COVID‐19 disease severity assessment using CNN model". IET Image Processing 15, nr 8 (7.03.2021): 1814–24. http://dx.doi.org/10.1049/ipr2.12153.
Pełny tekst źródłaŁach, Błażej, i Edyta Łukasik. "Faster R-CNN model learning on synthetic images". Journal of Computer Sciences Institute 17 (30.12.2020): 401–4. http://dx.doi.org/10.35784/jcsi.2285.
Pełny tekst źródła