Artykuły w czasopismach na temat „CNN AND LSTM NETWORKS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CNN AND LSTM NETWORKS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Garcia, Carlos Iturrino, Francesco Grasso, Antonio Luchetta, Maria Cristina Piccirilli, Libero Paolucci i Giacomo Talluri. "A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM". Applied Sciences 10, nr 19 (27.09.2020): 6755. http://dx.doi.org/10.3390/app10196755.
Pełny tekst źródłaXu-Nan Tan, Xu-Nan Tan. "Human Activity Recognition Based on CNN and LSTM". 電腦學刊 34, nr 3 (czerwiec 2023): 221–35. http://dx.doi.org/10.53106/199115992023063403016.
Pełny tekst źródłaLiu, Tianyuan, Jinsong Bao, Junliang Wang i Yiming Zhang. "A Hybrid CNN–LSTM Algorithm for Online Defect Recognition of CO2 Welding". Sensors 18, nr 12 (10.12.2018): 4369. http://dx.doi.org/10.3390/s18124369.
Pełny tekst źródłaGeng, Yue, Lingling Su, Yunhong Jia i Ce Han. "Seismic Events Prediction Using Deep Temporal Convolution Networks". Journal of Electrical and Computer Engineering 2019 (2.04.2019): 1–14. http://dx.doi.org/10.1155/2019/7343784.
Pełny tekst źródłaBanda, Anish. "Image Captioning using CNN and LSTM". International Journal for Research in Applied Science and Engineering Technology 9, nr 8 (31.08.2021): 2666–69. http://dx.doi.org/10.22214/ijraset.2021.37846.
Pełny tekst źródłaReddy, V. Varshith, Y. Shiva Krishna, U. Varun Kumar Reddy i Shubhangi Mahule. "Gray Scale Image Captioning Using CNN and LSTM". International Journal for Research in Applied Science and Engineering Technology 10, nr 4 (30.04.2022): 1566–71. http://dx.doi.org/10.22214/ijraset.2022.41589.
Pełny tekst źródłaZhang, Jilin, Lishi Ye i Yongzeng Lai. "Stock Price Prediction Using CNN-BiLSTM-Attention Model". Mathematics 11, nr 9 (23.04.2023): 1985. http://dx.doi.org/10.3390/math11091985.
Pełny tekst źródłaYang, Xingyu, i Zhongrong Zhang. "A CNN-LSTM Model Based on a Meta-Learning Algorithm to Predict Groundwater Level in the Middle and Lower Reaches of the Heihe River, China". Water 14, nr 15 (31.07.2022): 2377. http://dx.doi.org/10.3390/w14152377.
Pełny tekst źródłaSridhar, C., i Aniruddha Kanhe. "Performance Comparison of Various Neural Networks for Speech Recognition". Journal of Physics: Conference Series 2466, nr 1 (1.03.2023): 012008. http://dx.doi.org/10.1088/1742-6596/2466/1/012008.
Pełny tekst źródłaXu, Lingfeng, Xiang Chen, Shuai Cao, Xu Zhang i Xun Chen. "Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation". Sensors 18, nr 10 (25.09.2018): 3226. http://dx.doi.org/10.3390/s18103226.
Pełny tekst źródłaKłosowski, Grzegorz, Anna Hoła, Tomasz Rymarczyk, Mariusz Mazurek, Konrad Niderla i Magdalena Rzemieniak. "Using Machine Learning in Electrical Tomography for Building Energy Efficiency through Moisture Detection". Energies 16, nr 4 (11.02.2023): 1818. http://dx.doi.org/10.3390/en16041818.
Pełny tekst źródłaNguyen, Viet-Hung, Minh-Tuan Nguyen, Jeongsik Choi i Yong-Hwa Kim. "NLOS Identification in WLANs Using Deep LSTM with CNN Features". Sensors 18, nr 11 (20.11.2018): 4057. http://dx.doi.org/10.3390/s18114057.
Pełny tekst źródłaBilgera, Christian, Akifumi Yamamoto, Maki Sawano, Haruka Matsukura i Hiroshi Ishida. "Application of Convolutional Long Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas Source Localization in Outdoor Environments". Sensors 18, nr 12 (18.12.2018): 4484. http://dx.doi.org/10.3390/s18124484.
Pełny tekst źródłaYu, Dian, i Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition". Information 11, nr 4 (15.04.2020): 212. http://dx.doi.org/10.3390/info11040212.
Pełny tekst źródłaKumar, M. Pranay. "Image Captioning Generator Using CNN and LSTM". International Journal for Research in Applied Science and Engineering Technology 10, nr 6 (30.06.2022): 2847–51. http://dx.doi.org/10.22214/ijraset.2022.44502.
Pełny tekst źródłaBen Ismail, Mohamed Maher. "Insult detection using a partitional CNN-LSTM model". Computer Science and Information Technologies 1, nr 2 (1.07.2020): 84–92. http://dx.doi.org/10.11591/csit.v1i2.p84-92.
Pełny tekst źródłaHe, Yijuan, Jidong Lv, Hongjie Liu i Tao Tang. "Toward the Trajectory Predictor for Automatic Train Operation System Using CNN–LSTM Network". Actuators 11, nr 9 (31.08.2022): 247. http://dx.doi.org/10.3390/act11090247.
Pełny tekst źródłaMing, Ye, Hu Qian i Liu Guangyuan. "CNN-LSTM Facial Expression Recognition Method Fused with Two-Layer Attention Mechanism". Computational Intelligence and Neuroscience 2022 (13.10.2022): 1–9. http://dx.doi.org/10.1155/2022/7450637.
Pełny tekst źródłaAlamri, Nawaf Mohammad H., Michael Packianather i Samuel Bigot. "Optimizing the Parameters of Long Short-Term Memory Networks Using the Bees Algorithm". Applied Sciences 13, nr 4 (16.02.2023): 2536. http://dx.doi.org/10.3390/app13042536.
Pełny tekst źródłaK A, Shirien, Neethu George i Surekha Mariam Varghese. "Descriptive Answer Script Grading System using CNN-BiLSTM Network". International Journal of Recent Technology and Engineering 9, nr 5 (30.01.2021): 139–44. http://dx.doi.org/10.35940/ijrte.e5212.019521.
Pełny tekst źródłaShen, Qianqiao, Guiyong Wang, Yuhua Wang, Boshun Zeng, Xuan Yu i Shuchao He. "Prediction Model for Transient NOx Emission of Diesel Engine Based on CNN-LSTM Network". Energies 16, nr 14 (13.07.2023): 5347. http://dx.doi.org/10.3390/en16145347.
Pełny tekst źródłaYao, Ruizhe, Ning Wang, Zhihui Liu, Peng Chen i Xianjun Sheng. "Intrusion Detection System in the Advanced Metering Infrastructure: A Cross-Layer Feature-Fusion CNN-LSTM-Based Approach". Sensors 21, nr 2 (18.01.2021): 626. http://dx.doi.org/10.3390/s21020626.
Pełny tekst źródłaZhang, Chun-Xiang, Shu-Yang Pang, Xue-Yao Gao, Jia-Qi Lu i Bo Yu. "Attention Neural Network for Biomedical Word Sense Disambiguation". Discrete Dynamics in Nature and Society 2022 (10.01.2022): 1–14. http://dx.doi.org/10.1155/2022/6182058.
Pełny tekst źródłaWei, Jun, Fan Yang, Xiao-Chen Ren i Silin Zou. "A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods". Applied Sciences 11, nr 15 (27.07.2021): 6915. http://dx.doi.org/10.3390/app11156915.
Pełny tekst źródłaAlshingiti, Zainab, Rabeah Alaqel, Jalal Al-Muhtadi, Qazi Emad Ul Haq, Kashif Saleem i Muhammad Hamza Faheem. "A Deep Learning-Based Phishing Detection System Using CNN, LSTM, and LSTM-CNN". Electronics 12, nr 1 (3.01.2023): 232. http://dx.doi.org/10.3390/electronics12010232.
Pełny tekst źródłaMou, Hanlin, i Junsheng Yu. "CNN-LSTM Prediction Method for Blood Pressure Based on Pulse Wave". Electronics 10, nr 14 (13.07.2021): 1664. http://dx.doi.org/10.3390/electronics10141664.
Pełny tekst źródłaWang, Changyuan, Ting Yan i Hongbo Jia. "Spatial-Temporal Feature Representation Learning for Facial Fatigue Detection". International Journal of Pattern Recognition and Artificial Intelligence 32, nr 12 (27.08.2018): 1856018. http://dx.doi.org/10.1142/s0218001418560189.
Pełny tekst źródłaSun, Jiaqi, Jiarong Wang, Zhicheng Hao, Ming Zhu, Haijiang Sun, Ming Wei i Kun Dong. "AC-LSTM: Anomaly State Perception of Infrared Point Targets Based on CNN+LSTM". Remote Sensing 14, nr 13 (4.07.2022): 3221. http://dx.doi.org/10.3390/rs14133221.
Pełny tekst źródłaAshraf, Mohsin, Fazeel Abid, Ikram Ud Din, Jawad Rasheed, Mirsat Yesiltepe, Sook Fern Yeo i Merve T. Ersoy. "A Hybrid CNN and RNN Variant Model for Music Classification". Applied Sciences 13, nr 3 (22.01.2023): 1476. http://dx.doi.org/10.3390/app13031476.
Pełny tekst źródłaAlam, Muhammad S., AKM B. Hossain i Farhan B. Mohamed. "Performance Evaluation of Recurrent Neural Networks Applied to Indoor Camera Localization". International Journal of Emerging Technology and Advanced Engineering 12, nr 8 (2.08.2022): 116–24. http://dx.doi.org/10.46338/ijetae0822_15.
Pełny tekst źródłaKim, Tae-Young, i Sung-Bae Cho. "Predicting residential energy consumption using CNN-LSTM neural networks". Energy 182 (wrzesień 2019): 72–81. http://dx.doi.org/10.1016/j.energy.2019.05.230.
Pełny tekst źródłaLi, Shuyan, Zhixiang Chen, Xiu Li, Jiwen Lu i Jie Zhou. "Unsupervised Variational Video Hashing With 1D-CNN-LSTM Networks". IEEE Transactions on Multimedia 22, nr 6 (czerwiec 2020): 1542–54. http://dx.doi.org/10.1109/tmm.2019.2946096.
Pełny tekst źródłaSperandio Nascimento, Erick Giovani, Júnia Ortiz, Adhvan Novais Furtado i Diego Frias. "Using discrete wavelet transform for optimizing COVID-19 new cases and deaths prediction worldwide with deep neural networks". PLOS ONE 18, nr 4 (6.04.2023): e0282621. http://dx.doi.org/10.1371/journal.pone.0282621.
Pełny tekst źródłaZhang, Yilin. "Short-Term Power Load Forecasting Based on SAPSO-CNN-LSTM Model considering Autocorrelated Errors". Mathematical Problems in Engineering 2022 (14.05.2022): 1–10. http://dx.doi.org/10.1155/2022/2871889.
Pełny tekst źródłaZhang, Chen, Qingxu Li i Xue Cheng. "Text Sentiment Classification Based on Feature Fusion". Revue d'Intelligence Artificielle 34, nr 4 (30.09.2020): 515–20. http://dx.doi.org/10.18280/ria.340418.
Pełny tekst źródłaAlam, Md Shahinur, Ki-Chul Kwon, Shariar Md Imtiaz, Md Biddut Hossain, Bong-Gyun Kang i Nam Kim. "TARNet: An Efficient and Lightweight Trajectory-Based Air-Writing Recognition Model Using a CNN and LSTM Network". Human Behavior and Emerging Technologies 2022 (24.09.2022): 1–13. http://dx.doi.org/10.1155/2022/6063779.
Pełny tekst źródłaBarua, Arnab, Daniel Fuller, Sumayyah Musa i Xianta Jiang. "Exploring Orientation Invariant Heuristic Features with Variant Window Length of 1D-CNN-LSTM in Human Activity Recognition". Biosensors 12, nr 7 (21.07.2022): 549. http://dx.doi.org/10.3390/bios12070549.
Pełny tekst źródłaDu, Wenjun, Bo Sun, Jiating Kuai, Jiemin Xie, Jie Yu i Tuo Sun. "Highway Travel Time Prediction of Segments Based on ANPR Data considering Traffic Diversion". Journal of Advanced Transportation 2021 (9.07.2021): 1–16. http://dx.doi.org/10.1155/2021/9512501.
Pełny tekst źródłaJing, Xin, Jungang Luo, Shangyao Zhang i Na Wei. "Runoff forecasting model based on variational mode decomposition and artificial neural networks". Mathematical Biosciences and Engineering 19, nr 2 (2021): 1633–48. http://dx.doi.org/10.3934/mbe.2022076.
Pełny tekst źródłaLiu, Kun, Yong Liu, Shuo Ji, Chi Gao, Shizhong Zhang i Jun Fu. "A Novel Gait Phase Recognition Method Based on DPF-LSTM-CNN Using Wearable Inertial Sensors". Sensors 23, nr 13 (26.06.2023): 5905. http://dx.doi.org/10.3390/s23135905.
Pełny tekst źródłaArif, Sheeraz, Jing Wang, Tehseen Ul Hassan i Zesong Fei. "3D-CNN-Based Fused Feature Maps with LSTM Applied to Action Recognition". Future Internet 11, nr 2 (13.02.2019): 42. http://dx.doi.org/10.3390/fi11020042.
Pełny tekst źródłaSun, Tuo, Chenwei Yang, Ke Han, Wanjing Ma i Fan Zhang. "Bidirectional Spatial–Temporal Network for Traffic Prediction with Multisource Data". Transportation Research Record: Journal of the Transportation Research Board 2674, nr 8 (5.07.2020): 78–89. http://dx.doi.org/10.1177/0361198120927393.
Pełny tekst źródłaLivieris, Ioannis E., Niki Kiriakidou, Stavros Stavroyiannis i Panagiotis Pintelas. "An Advanced CNN-LSTM Model for Cryptocurrency Forecasting". Electronics 10, nr 3 (26.01.2021): 287. http://dx.doi.org/10.3390/electronics10030287.
Pełny tekst źródłaZhou, Xiu, Xutao Wu, Pei Ding, Xiuguang Li, Ninghui He, Guozhi Zhang i Xiaoxing Zhang. "Research on Transformer Partial Discharge UHF Pattern Recognition Based on Cnn-lstm". Energies 13, nr 1 (20.12.2019): 61. http://dx.doi.org/10.3390/en13010061.
Pełny tekst źródłaDu, Shaohui, Zhenghan Chen, Haoyan Wu, Yihong Tang i YuanQing Li. "Image Recommendation Algorithm Combined with Deep Neural Network Designed for Social Networks". Complexity 2021 (2.07.2021): 1–9. http://dx.doi.org/10.1155/2021/5196190.
Pełny tekst źródłaLu, Wenxing, Haidong Rui, Changyong Liang, Li Jiang, Shuping Zhao i Keqing Li. "A Method Based on GA-CNN-LSTM for Daily Tourist Flow Prediction at Scenic Spots". Entropy 22, nr 3 (25.02.2020): 261. http://dx.doi.org/10.3390/e22030261.
Pełny tekst źródłaChen, Ningyan. "Visual recognition and prediction analysis of China’s real estate index and stock trend based on CNN-LSTM algorithm optimized by neural networks". PLOS ONE 18, nr 2 (24.02.2023): e0282159. http://dx.doi.org/10.1371/journal.pone.0282159.
Pełny tekst źródłaChuang, Chia-Chun, Chien-Ching Lee, Chia-Hong Yeng, Edmund-Cheung So i Yeou-Jiunn Chen. "Attention Mechanism-Based Convolutional Long Short-Term Memory Neural Networks to Electrocardiogram-Based Blood Pressure Estimation". Applied Sciences 11, nr 24 (17.12.2021): 12019. http://dx.doi.org/10.3390/app112412019.
Pełny tekst źródłaLu, Yi-Xiang, Xiao-Bo Jin, Dong-Jie Liu, Xin-Chang Zhang i Guang-Gang Geng. "Anomaly Detection Using Multiscale C-LSTM for Univariate Time-Series". Security and Communication Networks 2023 (23.01.2023): 1–12. http://dx.doi.org/10.1155/2023/6597623.
Pełny tekst źródłaFu, Lei, Qizhi Tang, Peng Gao, Jingzhou Xin i Jianting Zhou. "Damage Identification of Long-Span Bridges Using the Hybrid of Convolutional Neural Network and Long Short-Term Memory Network". Algorithms 14, nr 6 (8.06.2021): 180. http://dx.doi.org/10.3390/a14060180.
Pełny tekst źródła