Rozprawy doktorskie na temat „CNN AND LSTM NETWORKS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych rozpraw doktorskich naukowych na temat „CNN AND LSTM NETWORKS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj rozprawy doktorskie z różnych dziedzin i twórz odpowiednie bibliografie.
Graffi, Giacomo. "A novel approach for Credit Scoring using Deep Neural Networks with bank transaction data". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Znajdź pełny tekst źródłaHolm, Noah, i Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks". Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Pełny tekst źródłaLin, Alvin. "Video Based Automatic Speech Recognition Using Neural Networks". DigitalCommons@CalPoly, 2020. https://digitalcommons.calpoly.edu/theses/2343.
Pełny tekst źródłaBHATT, HARSHIT. "SPEAKER IDENTIFICATION FROM VOICE SIGNALS USING HYBRID NEURAL NETWORK". Thesis, DELHI TECHNOLOGICAL UNIVERSITY, 2021. http://dspace.dtu.ac.in:8080/jspui/handle/repository/18865.
Pełny tekst źródłaLagerhjelm, Linus. "Extracting Information from Encrypted Data using Deep Neural Networks". Thesis, Umeå universitet, Institutionen för tillämpad fysik och elektronik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-155904.
Pełny tekst źródłaNäslund, Per. "Artificial Neural Networks in Swedish Speech Synthesis". Thesis, KTH, Tal-kommunikation, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-239350.
Pełny tekst źródłaTalsynteser, också kallat TTS (text-to-speech) används i stor utsträckning inom smarta assistenter och många andra applikationer. Samtida forskning applicerar maskininlärning och artificiella neurala nätverk (ANN) för att utföra talsyntes. Det har visats i studier att dessa system presterar bättre än de äldre konkatenativa och parametriska metoderna. I den här rapporten utforskas ANN-baserade TTS-metoder och en av metoderna implementeras för det svenska språket. Den använda metoden kallas “Tacotron” och är ett första steg mot end-to-end TTS baserat på neurala nätverk. Metoden binder samman flertalet olika ANN-tekniker. Det resulterande systemet jämförs med en parametriskt TTS genom ett graderat preferens-test som innefattar 20 svensktalande försökspersoner. En statistiskt säkerställd preferens för det ANN- baserade TTS-systemet fastställs. Försökspersonerna indikerar att det ANN-baserade TTS-systemet presterar bättre än det parametriska när det kommer till ljudkvalitet och naturlighet men visar brister inom tydlighet.
Evholt, David, i Oscar Larsson. "Generative Adversarial Networks and Natural Language Processing for Macroeconomic Forecasting". Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273422.
Pełny tekst źródłaMakroekonomiska prognoser är sedan länge en svår utmaning. Idag löses de oftast med tidsserieanalys och få försök har gjorts med maskininlärning. I denna uppsats används ett generativt motstridande nätverk (GAN) för att förutspå amerikansk arbetslöshet, med resultat som slår samtliga riktmärken satta av en ARIMA. Ett försök görs också till att använda data från Twitter och den datorlingvistiska (NLP) modellen DistilBERT. Dessa modeller slår inte riktmärkena men visar lovande resultat. Modellerna testas vidare på det amerikanska börsindexet S&P 500. För dessa modeller förbättrade Twitterdata resultaten vilket visar på den potential data från sociala medier har när de appliceras på mer oregelbunda index, utan tydligt säsongsberoende och som är mer känsliga för trender i det offentliga samtalet. Resultaten visar på att Twitterdata kan användas för att hitta trender i både amerikansk arbetslöshet och S&P 500 indexet. Detta lägger grunden för fortsatt forskning inom NLP-GAN modeller för makroekonomiska prognoser baserade på data från sociala medier.
Volný, Miloš. "Využití umělé inteligence jako podpory pro rozhodování v podniku". Master's thesis, Vysoké učení technické v Brně. Fakulta podnikatelská, 2019. http://www.nusl.cz/ntk/nusl-399447.
Pełny tekst źródłaBroomé, Sofia. "Objectively recognizing human activity in body-worn sensor data with (more or less) deep neural networks". Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210243.
Pełny tekst źródłaInom ramen för uppsatsen testas hur väl rörelsemönster kan urskiljas ur accelerometerdatamed hjälp av den gren av maskininlärning som kallas djupinlärning; där djupa artificiellaneurala nätverk av noder funktionsapproximerar mappandes från domänen av sensordatatill olika fördefinerade kategorier av aktiviteter så som gång, stående, sittande eller liggande.Det finns ett intresse från den medicinska sidan att kunna mäta fysisk aktivitet objektivt,bland annat eftersom det visats att det finns en korrelation mellan ökade hälsorisker hosbarn och deras mängd daglig skärmtid. Denna typ av mätningar ska helst kunna göras medicke-invasiv utrustning till låg kostnad för att kunna göra större studier.Enklare nätverksarkitekturer samt återimplementeringar av bästa möjliga teknik inomområdet Mänsklig aktivitetsigenkänning (HAR) testas både på ett benchmarkingdataset ochpå egeninhämtad data i samarbete med Institutet för Folkhälsovetenskap på Karolinska Institutetoch resultat redovisas för olika val av möjliga klassificeringar och olika antal dimensionerper mätpunkt. De uppnådda resultaten (95% F1-score) på ett 4- och 5-klass-problem ärjämförbara med de bästa tidigare publicerade resultaten för aktivitetsigenkänning, vilket äranmärkningsvärt då då betydligt färre accelerometrar har använts här än i de åsyftade studierna.Förutom klassificeringsresultaten som redovisas bidrar det här arbetet med ett nyttinhämtat och kategorimärkt dataset; KTH-KI-AA. Det är jämförbart i antal datapunkter medspridda benchmarkingdataset inom HAR-området.
Chowdhury, Muhammad Iqbal Hasan. "Question-answering on image/video content". Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205096/1/Muhammad%20Iqbal%20Hasan_Chowdhury_Thesis.pdf.
Pełny tekst źródłaĎuriš, Denis. "Detekce ohně a kouře z obrazového signálu". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-412968.
Pełny tekst źródłaKvita, Jakub. "Popis fotografií pomocí rekurentních neuronových sítí". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2016. http://www.nusl.cz/ntk/nusl-255324.
Pełny tekst źródłaHedar, Sara. "Applying Machine Learning Methods to Predict the Outcome of Shots in Football". Thesis, Uppsala universitet, Avdelningen för systemteknik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-414774.
Pełny tekst źródłaForslund, John, i Jesper Fahlén. "Predicting customer purchase behavior within Telecom : How Artificial Intelligence can be collaborated into marketing efforts". Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279575.
Pełny tekst źródłaDenna studie undersöker implementeringen av en AI-modell som förutspår kunders köp, inom telekombranschen. Studien syftar även till att påvisa hur en sådan AI-modell kan understödja beslutsfattande i marknadsföringsstrategier. Genom att designa AI-modellen med en Recurrent Neural Network (RNN) arkitektur med ett Long Short-Term Memory (LSTM) lager, drar studien slutsatsen att en sådan design möjliggör en framgångsrik implementering med tillfredsställande modellprestation. Instruktioner erhålls stegvis för att konstruera modellen i studiens metodikavsnitt. RNN-LSTM-modellen kan med fördel användas som ett hjälpande verktyg till marknadsförare för att bedöma hur en kunds beteendemönster på en hemsida påverkar deras köpbeteende över tiden, på ett kvantitativt sätt - genom att observera det ramverk som författarna kallar för Kundköpbenägenhetsresan, på engelska Customer Purchase Propensity Journey (CPPJ). Den empiriska grunden av CPPJ kan hjälpa organisationer att förbättra allokeringen av marknadsföringsresurser, samt gynna deras digitala närvaro genom att möjliggöra mer relevant personalisering i kundupplevelsen.
Hamerník, Pavel. "Využití hlubokého učení pro rozpoznání textu v obrazu grafického uživatelského rozhraní". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2019. http://www.nusl.cz/ntk/nusl-403823.
Pełny tekst źródłaKramář, Denis. "Analýza zvukových nahrávek pomocí hlubokého učení". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2021. http://www.nusl.cz/ntk/nusl-442571.
Pełny tekst źródłaGessle, Gabriel, i Simon Åkesson. "A comparative analysis of CNN and LSTM for music genre classification". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260138.
Pełny tekst źródłaMusikindustrin har sett en stor ökning i antalet sätt att hitta och distribuera musik. Det kommer däremot med sina nackdelar, då mängden data ökar fort så blir det svårare att hantera den på ett bra sätt. Ljudfiler har mängder av information man kan extrahera och därmed göra den här processen enklare. Det är möjligt att använda sig av de olika typer av information som finns i filen, men bästa sättet att hantera dessa är inte alltid känt. Den här rapporten jämför två olika djupinlärningsmetoder, convolutional neural network (CNN) och long short-term memory (LSTM), tränade med mel-frequency cepstral coefficients (MFCCs) för klassificering av musikgenre i hopp om att göra ljuddata lättare att hantera inför framtida användning. Modellerna testades på två olika dataset, GTZAN och FMA, där resultaten visade att CNN:et fick en träffsäkerhet på 56.0% och 50.5% tränat på respektive dataset. Denna utpresterade LSTM modellen som istället uppnådde en träffsäkerhet på 42.0% och 33.5%.
Albert, Florea George, i Filip Weilid. "Deep Learning Models for Human Activity Recognition". Thesis, Malmö universitet, Fakulteten för teknik och samhälle (TS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:mau:diva-20201.
Pełny tekst źródłaThe Augmented Multi-party Interaction(AMI) Meeting Corpus database is used to investigate group activity recognition in an office environment. The AMI Meeting Corpus database provides researchers with remote controlled meetings and natural meetings in an office environment; meeting scenario in a four person sized office room. To achieve the group activity recognition video frames and 2-dimensional audio spectrograms were extracted from the AMI database. The video frames were RGB colored images and audio spectrograms had one color channel. The video frames were produced in batches so that temporal features could be evaluated together with the audio spectrogrames. It has been shown that including temporal features both during model training and then predicting the behavior of an activity increases the validation accuracy compared to models that only use spatial features [1]. Deep learning architectures have been implemented to recognize different human activities in the AMI office environment using the extracted data from the AMI database.The Neural Network models were built using the Keras API together with TensorFlow library. There are different types of Neural Network architectures. The architecture types that were investigated in this project were Residual Neural Network, Visual Geometry Group 16, Inception V3 and RCNN(Recurrent Neural Network). ImageNet weights have been used to initialize the weights for the Neural Network base models. ImageNet weights were provided by Keras API and was optimized for each base model[2]. The base models uses ImageNet weights when extracting features from the input data.The feature extraction using ImageNet weights or random weights together with the base models showed promising results. Both the Deep Learning using dense layers and the LSTM spatio-temporal sequence prediction were implemented successfully.
ALIBERTI, ALESSANDRO. "Machine learning techniques to forecast non-linear trends in smart environments". Doctoral thesis, Politecnico di Torino, 2020. http://hdl.handle.net/11583/2846613.
Pełny tekst źródłaOlin, Per. "Evaluation of text classification techniques for log file classification". Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166641.
Pełny tekst źródłaSuresh, Sreerag. "An Analysis of Short-Term Load Forecasting on Residential Buildings Using Deep Learning Models". Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/99287.
Pełny tekst źródłaMaster of Science
Building energy load forecasting is becoming an increasingly important task with the rapid deployment of smart homes, integration of renewables into the grid and the advent of decentralized energy systems. Residential load forecasting has been a challenging task since residential load is highly stochastic. Deep learning models have showed tremendous promise in the fields of time-series and sequential data and have been successfully used in the field of short-term load forecasting. Although, other studies have looked at using deep learning models for building energy forecasting, most of those studies have looked at only a single home or an aggregate load of a collection of homes. This study aims to address this gap and serve as an analysis on short term load forecasting on 3 communities of residential buildings. Detailed analysis on the model performances across all homes have been studied. Deep learning models have been used in this study and their efficacy is measured compared to a simple ANN model.
Cavallie, Mester Jon William. "Using LSTM Neural Networks To Predict Daily Stock Returns". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-106124.
Pełny tekst źródłaPokhrel, Abhishek <1996>. "Stock Returns Prediction using Recurrent Neural Networks with LSTM". Master's Degree Thesis, Università Ca' Foscari Venezia, 2022. http://hdl.handle.net/10579/22038.
Pełny tekst źródłaLara, Teodoro. "Controllability and applications of CNN". Diss., Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/28921.
Pełny tekst źródłaTerefe, Adisu Wagaw. "Handwritten Recognition for Ethiopic (Ge’ez) Ancient Manuscript Documents". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-288145.
Pełny tekst źródłaDet handskrivna igenkännings systemet är en process för att lära sig ett mönster från en viss bild av text. Erkännande Processen kombinerar vanligtvis en datorvisionsuppgift med sekvens inlärningstekniker. Transkribering av texter från den skannade bilden är fortfarande ett utmanande problem, särskilt när dokumenten är mycket försämrad eller har för omåttlig dammiga buller. Nuförtiden finns det flera handskrivna igenkänningar system både kommersiellt och i gratisversionen, särskilt för latin baserade språk. Det finns dock ingen tidigare studie som har byggts för Ge’ez handskrivna gamla manuskript dokument. I motsats till detta språk har många mysterier från det förflutna, i vetenskapens mänskliga historia, arkitektur, medicin och astronomi. I denna avhandling presenterar vi två separata igenkänningssystem. (1) Ett karaktärs nivå igenkänningssystem som kombinerar bildigenkänning för karaktär segmentering från forntida böcker och ett vanilj Convolutional Neural Network (CNN) för att erkänna karaktärer. (2) Ett änd-till-slut-segmentering fritt handskrivet igenkänningssystem som använder CNN, Multi-Dimensional Recurrent Neural Network (MDRNN) med Connectionist Temporal Classification (CTC) för etiopiska (Ge’ez) manuskript dokument. Den föreslagna karaktär igenkännings modellen överträffar 97,78% noggrannhet. Däremot ger den andra modellen ett uppmuntrande resultat som indikerar att ytterligare studera språk egenskaperna för bättre igenkänning av alla antika böcker.
Carpani, Valerio. "CNN-based video analytics". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Znajdź pełny tekst źródłaÄrlemalm, Filip. "Harbour Porpoise Click Train Classification with LSTM Recurrent Neural Networks". Thesis, KTH, Teknisk informationsvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215088.
Pełny tekst źródłaVanlig tumlare är en tandval vars närvaro i Skandinavien är hotad. Ett steg mot att kunnabevara arten i utsatta områden är att studera och observera tumlarbeståndets tillväxt ellertillbakagång i dessa områden. Detta görs idag med hjälp av ljudinspelare för undervattensbruk,så kallade hydrofoner, samt manuella analysverktyg. Den här rapporten beskriver enmetod som moderniserar processen för detektering av vanlig tumlare genom maskininlärning.Detekteringen är baserad på insamlad data från hydrofonen AQUAclick 100. Bearbetning ochklassificering av data har automatiserats genom att använda ett staplat återkopplande neuraltnätverk med långt korttidsminne utarbetat specifikt för detta ändamål.
El-Shafei, Ahmed. "Time multiplexing of cellular neural networks". Thesis, University of Kent, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365221.
Pełny tekst źródłaHossain, Md Tahmid. "Towards robust convolutional neural networks in challenging environments". Thesis, Federation University Australia, 2021. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/181882.
Pełny tekst źródłaDoctor of Philosophy
Ferreira, de Melo Filho Alberto. "Predicting the unpredictable - Can Artificial Neural Network replace ARIMA for prediction of the Swedish Stock Market (OMXS30)?" Thesis, Mittuniversitetet, Institutionen för ekonomi, geografi, juridik och turism, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-36908.
Pełny tekst źródłaRintala, Jonathan. "Speech Emotion Recognition from Raw Audio using Deep Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-278858.
Pełny tekst źródłaTraditionellt sätt, vid talbaserad känsloigenkänning, kräver modeller ett stort antal manuellt konstruerade attribut och mellanliggande representationer, såsom spektrogram, för träning. Men att konstruera sådana attribut för hand kräver ofta både domänspecifika expertkunskaper och resurser. Nyligen har djupinlärningens framväxande end-to-end modeller, som utvinner attribut och lär sig direkt från den råa ljudsignalen, undersökts. Ett tidigare tillvägagångssätt har varit att kombinera parallella CNN:er med olika filterlängder för att extrahera flera temporala attribut från ljudsignalen och sedan låta den resulterande sekvensen passera vidare in i ett så kallat Recurrent Neural Network. Andra tidigare studier har också nått en hög noggrannhet när man använder lokala inlärningsblock (LFLB) för att reducera dimensionaliteten hos den råa ljudsignalen, och på så sätt extraheras den viktigaste informationen från ljudet. Således kombinerar denna studie idén om att nyttja LFLB:er för extraktion av attribut, tillsammans med ett block av parallella CNN:er som har olika filterlängder för att fånga multitemporala attribut; detta kommer slutligen att matas in i ett LSTM-lager för global inlärning av kontextuell information. Så vitt vi vet har en sådan kombinerad arkitektur ännu inte undersökts. Vidare kommer denna studie att undersöka olika konfigurationer av en sådan arkitektur. Den föreslagna modellen tränas och utvärderas sedan på de välkända taldatabaserna EmoDB och RAVDESS, både via ett talarberoende och talaroberoende tillvägagångssätt. Resultaten indikerar att den föreslagna arkitekturen kan ge jämförbara resultat med state-of-the-art, trots att ingen ökning av data eller avancerad förbehandling har inkluderats. Det rapporteras att 3 parallella CNN-lager gav högsta noggrannhet, tillsammans med en serie av modifierade LFLB:er som nyttjar average-pooling och ReLU som aktiveringsfunktion. Detta visar fördelarna med att lämna inlärningen av attribut till nätverket och öppnar upp för intressant framtida forskning kring tidskomplexitet och avvägning mellan introduktion av komplexitet i förbehandlingen eller i själva modellarkitekturen.
Paschou, Michail. "ASIC implementation of LSTM neural network algorithm". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254290.
Pełny tekst źródłaLSTM neurala nätverk har använts för taligenkänning, bildigenkänning och andra artificiella intelligensapplikationer i många år. De flesta applikationer utför LSTM-algoritmen och de nödvändiga beräkningarna i digitala moln. Offline lösningar inkluderar användningen av FPGA och GPU men de mest lovande lösningarna inkluderar ASIC-acceleratorer utformade för endast dettaändamål. Denna rapport presenterar en ASIC-design som kan utföra multipla iterationer av LSTM-algoritmen på en enkelriktad neural nätverksarkitetur utan peepholes. Den föreslagna designed ger aritmetrisk nivå-parallellismalternativ som block som är instansierat baserat på parametrar. Designens inre konstruktion implementerar pipelinerade, parallella, eller seriella lösningar beroende på vilket anternativ som är optimalt till alla fall. Konsekvenserna för dessa beslut diskuteras i detalj i rapporten. Designprocessen beskrivs i detalj och utvärderingen av designen presenteras också för att mäta noggrannheten och felmarginal i designutgången. Resultatet av arbetet från denna rapport är en fullständig syntetiserbar ASIC design som har implementerat ett LSTM-lager, ett fullständigt anslutet lager och ett Softmax-lager som kan utföra klassificering av data baserat på tränade viktmatriser och biasvektorer. Designen använder huvudsakligen 16bitars fast flytpunktsformat med 5 heltal och 11 fraktions bitar men ökade precisionsrepresentationer används i vissa block för att minska felmarginal. Till detta har även en verifieringsmiljö utformats som kan utföra simuleringar, utvärdera designresultatet genom att jämföra det med resultatet som produceras från att utföra samma operationer med 64-bitars flytpunktsprecision på en SystemVerilog testbänk och mäta uppstådda felmarginal. Resultaten avseende noggrannheten och designutgångens felmarginal presenteras i denna rapport.Designen gick genom Logisk och Fysisk syntes och framgångsrikt resulterade i en funktionell nätlista för varje testad konfiguration. Timing, area och effektmätningar på den genererade nätlistorna av olika konfigurationer av designen visar konsistens och rapporteras i denna rapport.
Kapoor, Prince. "Shoulder Keypoint-Detection from Object Detection". Thesis, Université d'Ottawa / University of Ottawa, 2018. http://hdl.handle.net/10393/38015.
Pełny tekst źródłaZambezi, Samantha. "Predicting social unrest events in South Africa using LSTM neural networks". Master's thesis, Faculty of Science, 2021. http://hdl.handle.net/11427/33986.
Pełny tekst źródłaEngström, Olof. "Deep Learning for Anomaly Detection in Microwave Links : Challenges and Impact on Weather Classification". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-276676.
Pełny tekst źródłaArtificiell intelligens har fått mycket uppmärksamhet inom olika teknik- och vetenskapsområden på grund av dess många lovande tillämpningar. I dagens samhälle är väderklassificeringsmodeller med hög noggrannhet av yttersta vikt. Ett alternativ till att använda konventionell väderradar är att använda uppmätta dämpningsdata i mikrovågslänkar som indata till djupinlärningsbaserade väderklassificeringsmodeller. Detektering av avvikelser i uppmätta dämpningsdata är av stor betydelse eftersom en klassificeringsmodells pålitlighet minskar om träningsdatat innehåller avvikelser. Att utforma en noggrann klassificeringsmodell är svårt på grund av bristen på fördefinierade kännetecken för olika typer av väderförhållanden, och på grund av de specifika domänkrav som ofta ställs när det gäller exekveringstid och detekteringskänslighet. I det här examensarbetet undersöker vi förhållandet mellan avvikelser i uppmätta dämpningsdata från mikrovågslänkar, och felklassificeringar gjorda av en väderklassificeringsmodell. För detta ändamål utvärderar vi avvikelsedetektering inom ramen för väderklassificering med hjälp av två djupinlärningsmodeller, baserade på long short-term memory-nätverk (LSTM) och faltningsnätverk (CNN). Vi utvärderar genomförbarhet och generaliserbarhet av den föreslagna metodiken i en industriell fallstudie hos Ericsson AB. Resultaten visar att båda föreslagna metoder kan upptäcka avvikelser som korrelerar med felklassificeringar gjorda av väderklassificeringsmodellen. LSTM-modellen presterade bättre än CNN-modellen både med hänsyn till toppprestanda på en länk och med hänsyn till genomsnittlig prestanda över alla 5 testade länkar, men CNNmodellens prestanda var mer konsistent.
Verner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data". Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.
Pełny tekst źródłaChen, Yani. "Deep Learning based 3D Image Segmentation Methods and Applications". Ohio University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1547066297047003.
Pełny tekst źródłaLi, Xile. "Real-time Multi-face Tracking with Labels based on Convolutional Neural Networks". Thesis, Université d'Ottawa / University of Ottawa, 2017. http://hdl.handle.net/10393/36707.
Pełny tekst źródłaPervej, Md Ferdous. "Edge Caching for Small Cell Networks". DigitalCommons@USU, 2019. https://digitalcommons.usu.edu/etd/7580.
Pełny tekst źródłaXiang, Wenliang. "Anomaly detection by prediction for health monitoring of satellites using LSTM neural networks". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24695/.
Pełny tekst źródłaDíaz, González Fernando. "Federated Learning for Time Series Forecasting Using LSTM Networks: Exploiting Similarities Through Clustering". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254665.
Pełny tekst źródłaFederated Learning utgör en statistisk utmaning vid träning med starkt heterogen sekvensdata. Till exempel så uppvisar tidsseriedata inom telekomdomänen blandade variationer och mönster över längre tidsintervall. Dessa distinkta fördelningar utgör en utmaning när en nod inte bara ska bidra till skapandet av en global modell utan även ämnar applicera denna modell på sin lokala datamängd. Att i detta scenario införa en global modell som ska passa alla kan visa sig vara otillräckligt, även om vi använder oss av de mest framgångsrika modellerna inom maskininlärning för tidsserieprognoser, Long Short-Term Memory (LSTM) nätverk, vilka visat sig kunna fånga komplexa mönster och generalisera väl till nya mönster. I detta arbete visar vi att genom att klustra klienterna med hjälp av dessa mönster och selektivt aggregera deras uppdateringar i olika globala modeller kan vi uppnå förbättringar av den lokal prestandan med minimala kostnader, vilket vi demonstrerar genom experiment med riktigt tidsseriedata och en grundläggande LSTM-modell.
Castelli, Filippo Maria. "3D CNN methods in biomedical image segmentation". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019. http://amslaurea.unibo.it/18796/.
Pełny tekst źródłaLi, Edwin. "LSTM Neural Network Models for Market Movement Prediction". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231627.
Pełny tekst źródłaAtt förstå och kunna förutsäga hur index varierar med tiden och andra parametrar är ett viktigt problem inom kapitalmarknader. Tidsserieanalys med autoregressiva metoder har funnits sedan årtionden tillbaka, och har oftast gett goda resultat. Dessa metoder saknar dock möjligheten att förklara trender och cykliska variationer i tidsserien, något som kan karaktäriseras av tidsvarierande samband, men även samband mellan parametrar som indexet beror utav. Syftet med denna studie är att undersöka om recurrent neural networks (RNN) med long short-term memory-celler (LSTM) kan användas för att fånga dessa samband, för att slutligen användas som en modell för att komplettera indexhandel. Experimenten är gjorda mot en modifierad S&P-500 datamängd, och två distinkta modeller har tagits fram. Den ena är en multivariat regressionsmodell för att förutspå exakta värden, och den andra modellen är en multivariat klassifierare som förutspår riktningen på nästa dags indexrörelse. Experimenten visar för den konfiguration som presenteras i rapporten att LSTM RNN inte passar för att förutspå exakta värden för indexet, men ger tillfredsställande resultat när modellen ska förutsäga indexets framtida riktning.
Mazhar, Osama. "Vision-based human gestures recognition for human-robot interaction". Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS044.
Pełny tekst źródłaIn the light of factories of the future, to ensure productive, safe and effective interaction between robot and human coworkers, it is imperative that the robot extracts the essential information of the coworker. To address this, deep learning solutions are explored and a reliable human gesture detection framework is developed in this work. Our framework is able to robustly detect static hand gestures plus upper-body dynamic gestures.For static hand gestures detection, openpose is integrated with Kinect V2 to obtain a pseudo-3D human skeleton. With the help of 10 volunteers, we recorded an image dataset opensign, that contains Kinect V2 RGB and depth images of 10 alpha-numeric static hand gestures taken from the American Sign Language. "Inception V3" neural network is adapted and trained to detect static hand gestures in real-time.Subsequently, we extend our gesture detection framework to recognize upper-body dynamic gestures. A spatial attention based dynamic gestures detection strategy is proposed that employs multi-modal "Convolutional Neural Network - Long Short-Term Memory" deep network to extract spatio-temporal dependencies in pure RGB video sequences. The exploited convolutional neural network blocks are pre-trained on our static hand gestures dataset opensign, which allow efficient extraction of hand features. Our spatial attention module focuses on large-scale movements of upper limbs plus on hand images for subtle hand/fingers movements, to efficiently distinguish gestures classes.This module additionally exploits 2D upper-body pose to estimate distance of user from the sensor for scale-normalization plus determine the parameters of hands bounding boxes without a need of depth sensor. The information typically extracted from a depth camera in similar strategies is learned from opensign dataset. Thus the proposed gestures recognition strategy can be implemented on any system with a monocular camera.Afterwards, we briefly explore 3D human pose estimation strategies for monocular cameras. To estimate 3D human pose, a hybrid strategy is proposed which combines the merits of discriminative 2D pose estimators with that of model based generative approaches. Our method optimizes an objective function, that minimizes the discrepancy between position & scale-normalized 2D pose obtained from openpose, and a virtual 2D projection of a kinematic human model.For real-time human-robot interaction, an asynchronous distributed system is developed to integrate our static hand gestures detector module with an open-source physical human-robot interaction library OpenPHRI. We validate performance of the proposed framework through a teach by demonstration experiment with a robotic manipulator
Shaif, Ayad. "Predictive Maintenance in Smart Agriculture Using Machine Learning : A Novel Algorithm for Drift Fault Detection in Hydroponic Sensors". Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42270.
Pełny tekst źródłaMartell, Patrick Keith. "Hierarchical Auto-Associative Polynomial Convolutional Neural Networks". University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1513164029518038.
Pełny tekst źródłaAndréasson, David, i Blomquist Jesper Mortensen. "Forecasting the OMXS30 - a comparison between ARIMA and LSTM". Thesis, Uppsala universitet, Statistiska institutionen, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-413793.
Pełny tekst źródłaRoxbo, Daniel. "A Detailed Analysis of Semantic Dependency Parsing with Deep Neural Networks". Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-156831.
Pełny tekst źródłaEl, Ahmar Wassim. "Head and Shoulder Detection using CNN and RGBD Data". Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/39448.
Pełny tekst źródłaAhlin, Björn, i Marcus Gärdin. "Automated Classification of Steel Samples : An investigation using Convolutional Neural Networks". Thesis, KTH, Materialvetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209669.
Pełny tekst źródłaAutomatiserad bildigenkänning har tidigare använts inom ståltillverkning för olika sorters analyser. Den här studiens syfte är att undersöka om bildigenkänningsprogram applicerat på Svepelektronmikroskopi (SEM) bilder kan klassificera två stålprover. Stålproven var av samma sort, med skillnaden att de behandlats med kalcium olika lång tid. För att möjliggöra den automatiserade bildigenkänningen byggdes ett Convolutional Neural Network (CNN). Nätverket byggdes med hjälp av öppen kod från Keras Documentation. Detta för att programmet enkelt skall kunna reproduceras. Nätverket tränades, validerades och testades, först för vanliga bilder och sedan för binariserade bilder. Binariserade bilder användes för att tvinga programmet att bara klassificera med avseende på inneslutningar och inte på grundmatrisen. Resultaten på klassificeringen för vanliga bilder gav en träffsäkerhet på 99.99%. För binariserade bilder blev träffsäkerheten för klassificeringen 67.9%. Resultaten visar att det är möjligt att använda CNNs för att klassificera stålprover. En intressant möjlighet som vidare studier på CNNs kan leda till är att automatisk klassificering av inneslutningar kan möjliggöras.