Gotowa bibliografia na temat „CMRO2”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CMRO2”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CMRO2"
Jain, Varsha, Erin M. Buckley, Daniel J. Licht, Jennifer M. Lynch, Peter J. Schwab, Maryam Y. Naim, Natasha A. Lavin i in. "Cerebral Oxygen Metabolism in Neonates with Congenital Heart Disease Quantified by MRI and Optics". Journal of Cerebral Blood Flow & Metabolism 34, nr 3 (11.12.2013): 380–88. http://dx.doi.org/10.1038/jcbfm.2013.214.
Pełny tekst źródłaKlementavicius, Richard, Edwin M. Nemoto i Howard Yonas. "The Q10 ratio for basal cerebral metabolic rate for oxygen in rats". Journal of Neurosurgery 85, nr 3 (wrzesień 1996): 482–87. http://dx.doi.org/10.3171/jns.1996.85.3.0482.
Pełny tekst źródłaZhu, Xiao-Hong, Nanyin Zhang, Yi Zhang, Kâmil Uğurbil i Wei Chen. "New Insights into Central Roles of Cerebral Oxygen Metabolism in the Resting and Stimulus-Evoked Brain". Journal of Cerebral Blood Flow & Metabolism 29, nr 1 (10.09.2008): 10–18. http://dx.doi.org/10.1038/jcbfm.2008.97.
Pełny tekst źródłaMeyer, E., J. L. Tyler, C. J. Thompson, C. Redies, M. Diksic i A. M. Hakim. "Estimation of Cerebral Oxygen Utilization Rate by Single-Bolus 15O2 Inhalation and Dynamic Positron Emission Tomography". Journal of Cerebral Blood Flow & Metabolism 7, nr 4 (sierpień 1987): 403–14. http://dx.doi.org/10.1038/jcbfm.1987.83.
Pełny tekst źródłaThomsen, Kirsten, Henning Piilgaard, Albert Gjedde, Gilles Bonvento i Martin Lauritzen. "Principal Cell Spiking, Postsynaptic Excitation, and Oxygen Consumption in the Rat Cerebellar Cortex". Journal of Neurophysiology 102, nr 3 (wrzesień 2009): 1503–12. http://dx.doi.org/10.1152/jn.00289.2009.
Pełny tekst źródłaRodgers, Zachary B., John A. Detre i Felix W. Wehrli. "MRI-based methods for quantification of the cerebral metabolic rate of oxygen". Journal of Cerebral Blood Flow & Metabolism 36, nr 7 (18.04.2016): 1165–85. http://dx.doi.org/10.1177/0271678x16643090.
Pełny tekst źródłaVazquez, Alberto L., Mitsuhiro Fukuda i Seong-Gi Kim. "Evolution of the Dynamic Changes in Functional Cerebral Oxidative Metabolism from Tissue Mitochondria to Blood Oxygen". Journal of Cerebral Blood Flow & Metabolism 32, nr 4 (1.02.2012): 745–58. http://dx.doi.org/10.1038/jcbfm.2011.198.
Pełny tekst źródłaVafaee, Manouchehr S., Albert Gjedde, Nasrin Imamirad, Kim Vang, Mallar M. Chakravarty, Jason P. Lerch i Paul Cumming. "Smoking Normalizes Cerebral Blood Flow and Oxygen Consumption after 12-Hour Abstention". Journal of Cerebral Blood Flow & Metabolism 35, nr 4 (21.01.2015): 699–705. http://dx.doi.org/10.1038/jcbfm.2014.246.
Pełny tekst źródłaBusija, D. W., C. W. Leffler i M. Pourcyrous. "Hyperthermia increases cerebral metabolic rate and blood flow in neonatal pigs". American Journal of Physiology-Heart and Circulatory Physiology 255, nr 2 (1.08.1988): H343—H346. http://dx.doi.org/10.1152/ajpheart.1988.255.2.h343.
Pełny tekst źródłaSingh, Narendra C., Patrick M. Kochanek, Joanne K. Schiding, John A. Melick i Edwin M. Nemoto. "Uncoupled Cerebral Blood Flow and Metabolism after Severe Global Ischemia in Rats". Journal of Cerebral Blood Flow & Metabolism 12, nr 5 (wrzesień 1992): 802–8. http://dx.doi.org/10.1038/jcbfm.1992.111.
Pełny tekst źródłaRozprawy doktorskie na temat "CMRO2"
Hoffmann, Stefan Heinrich [Verfasser], i Peter [Akademischer Betreuer] Bachert. "Lokalisierte Quantifizierung des zerebralen Sauerstoffumsatzes (CMRO2) mit der 17O-Magnetresonanztomographie / Stefan Heinrich Hoffmann ; Betreuer: Peter Bachert". Heidelberg : Universitätsbibliothek Heidelberg, 2011. http://d-nb.info/1179783204/34.
Pełny tekst źródłaBoylan, Simon. "Cognitive effort, efficient coding and non-invasive fMRI measurement of their relation in sensorimotor responses". Electronic Thesis or Diss., Bordeaux, 2024. http://www.theses.fr/2024BORD0463.
Pełny tekst źródłaCognitive effort is a ubiquitous subjective feeling of exertion that pushes people to avoid demanding tasks. From a biological and evolutionary point of view, mental effort is thought to be a mechanism intended to preserve cognitive resources. However, so far, no consensus on the nature of these resources has been established. Since the brain functions as an information-processing organ, efficient coding theory suggests that cognitive resources—whatever their nature—are optimized and should depend on information gain.This hypothesis assumes certain principles about neural coding and information processing. Firstly, we frame our work in the premise that the brain is a Bayesian information-processing machine, that updates internal models through inferences between inputs and previous beliefs. If stimuli are familiar and naturalistic, efficient neural coding can take place to optimize information coding and processing. If these conditions are met, then we can estimate the quantity of information computed by the brain as the relative entropy between prior and posterior beliefs, or information gain; moreover the quantity of energy needed to compute information being optimized, energy spent on a task should be proportional to this same quantity.Indirect measures of this relationship have been validated through pupillometry, as pupil size correlates with information rate during cognitive tasks. In this thesis, we designed experiments to further validate this information-theoretical framework, using complementary behavioral and neuroimaging measures.To assess this hypothesis, we conducted three key experiments : two joystick visuo-motor and oculomotor tracking tasks with pupillometry, and a response-to-stimulus (Hick-Hyman) task in fMRI.The first study investigates the relation between cognitive effort, pupil size and continuous visual-motor prediction under this information framework. By controlling information components of the target, such as predictability, lag, speed and acceleration, we can validate the information origin of cognitive effort (NASA-TLX) and its correlation with pupil size .The second experiment was developed to test the overnight memorization and implicitness of eye and hand continuous tracking. Using the same design as in the first experiment, we ran four experimental sessions, divided in joystick and eye tracking, on two consecutive days. We showed that participants implicitly learned to better predict repeating parts of the trajectory, which resulted in better performance and smaller pupil dilation.The last study was designed to investigate the relationship between information processing and energy dissipation in the brain by quantifying the cerebral metabolic rate of oxygen (CMRO2) during a response to stimulus task in fMRI (BOLD-ASL sequence). Hick-Hyman task maps a different number of stimuli to their response buttons, depending on the complexity (entropy) of the trial or block. As a linear relationship exists between the quantity of information processed (entropy) and the performance (response time) during the task, we hypothesized that there should be a similar relation between the quantity of information needed to accomplish a task and the energy allocated to do so. We addressed multiple technical issues related to CMRO2 computation in a cognitive task context. While we have improved and automatized the data analysis pipeline, we faced significant challenges that prevented us to reach a final conclusion on our initial hypothesis
Bolar, Divya Sanam. "Magnetic resonance imaging of the cerebral metabolic rate of oxygen (CMRO₂)". Thesis, Massachusetts Institute of Technology, 2010. http://hdl.handle.net/1721.1/57542.
Pełny tekst źródłaThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references (p. 120-128).
Oxygen consumption is an essential process of the functioning brain. The rate at which the brain consumes oxygen is known as the cerebral metabolic rate of oxygen (CMRO₂). CMRO₂ is intimately related to brain health and function, and will change in settings of disease and functional activation. Accurate CMRO₂ measurement will enable detailed investigation of neuropathology and facilitate our understanding of the brain's underlying functional architecture. Despite the importance of CMRO₂ in both clinical and basic neuroscience settings, a robust CMRO₂ mapping technique amenable to functional and clinical MRI has not been established. To address this issue, a novel method called QUantitative Imaging of eXtraction of Oxygen and TIssue Consumption, or QUIXOTIC, is introduced. The key innovation in QUIXOTIC is the use of velocity-selective spin labeling to isolate MR signal exclusively from post-capillary venular blood on a voxel-by-voxel basis. This isolated signal can be related to venular oxygen saturation, oxygen extraction fraction, and ultimately CMRO₂. This thesis first explores fundamental theory behind the QUIXOTIC technique, including design of a novel MRI pulse sequence, explanation of the principal sequence parameters, and results from initial human experiences. A human trial follows, in which QUIXOTIC is used to measure cortical gray matter CMRO₂ in ten healthy volunteers.
(cont.) QUIXOTIC-measured CMRO₂ is found to be within the expected physiological range and is comparable to values reported by other techniques. QUIXOTIC is then applied to evaluate CMRO₂ response to carbon-dioxide-induced hypercapnia in awake humans. In this study, CMRO₂ is observed to decrease in response to mild hypercapnia. Finally, pilot studies that show feasibility of QUIXOTIC-based functional MRI (fMRI) and so-called "turbo" QUIXOTIC are presented and discussed.
by Divya Sanam Bolar.
Ph.D.
Tan, Hsueh-Li. "The Role of Tomato Bioactive Components and CMO2 Gene Interaction in Prostate Cancer Prevention". The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1345493048.
Pełny tekst źródłaZENATTI, MURIEL. "Des raisons biochimiques de l'atteinte preferentielle de la corticosterone methyl oxydase de type 2 (cmo2) dans le carcinome surrenalien". Paris 6, 1993. http://www.theses.fr/1993PA066281.
Pełny tekst źródłaCzęści książek na temat "CMRO2"
Bale, Gemma, Ajay Rajaram, Matthew Kewin, Laura Morrison, Alan Bainbridge, Linshan Liu, Udunna Anazodo, Mamadou Diop, Keith St Lawrence i Ilias Tachtsidis. "Multimodal Measurements of Brain Tissue Metabolism and Perfusion in a Neonatal Model of Hypoxic-Ischaemic Injury". W Advances in Experimental Medicine and Biology, 203–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-48238-1_32.
Pełny tekst źródłaHyder, Fahmeed, i Hal Blumenfeld. "Relationship between CMRO2 and Neuronal Activity". W Brain Energetics and Neuronal Activity, 173–94. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470020520.ch10.
Pełny tekst źródłaHyder, Fahmeed. "Deriving Changes in CMRO2 from Calibrated fMRI". W Brain Energetics and Neuronal Activity, 147–71. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470020520.ch9.
Pełny tekst źródłaSmith, David S. "Drug Induced Depression of CMRO2 During Aneurysm Clipping". W Anesthesia and the Central Nervous System, 329–40. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-1610-7_27.
Pełny tekst źródłaKlementavicius, R., E. M. Nemoto i H. Yonas. "Basal Q10 for Cerebral Metabolic Rate for Oxygen (CMRO2) in Rats". W Advances in Experimental Medicine and Biology, 191–95. Boston, MA: Springer US, 1996. http://dx.doi.org/10.1007/978-1-4613-0333-6_23.
Pełny tekst źródłaChen, Wei, Xiao-Hong Zhu i Kamil Ugurbil. "Imaging Cerebral Metabolic Rate of Oxygen Consumption (CMRO2) Using 17O NMR Approach at Ultrahigh Field". W Brain Energetics and Neuronal Activity, 125–46. Chichester, UK: John Wiley & Sons, Ltd, 2005. http://dx.doi.org/10.1002/0470020520.ch8.
Pełny tekst źródłaNemoto, Edwin M., John A. Melick i Peter Winter. "Active and Basal Cerebrometabolic Rate for Oxygen (CMRO2) After Complete Global Brain Ischemia in Rats". W Oxygen Transport to Tissue X, 391–96. New York, NY: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4615-9510-6_46.
Pełny tekst źródłaNemoto, Edwin M., Richard Klementavicius i Howard Yonas. "Functional and Basal Cerebral Metabolic Rate for Oxygen (CMRO2) and its Relevance to the Pathogenesis and Therapy of Brain Injury". W Oxygen Transport to Tissue XX, 235–42. Boston, MA: Springer US, 1998. http://dx.doi.org/10.1007/978-1-4615-4863-8_28.
Pełny tekst źródła"CMRO2 Mapping by Calibrated fMRI". W Quantifying Morphology and Physiology of the Human Body Using MRI, 99–124. CRC Press, 2013. http://dx.doi.org/10.1201/b14814-8.
Pełny tekst źródła"Mean cerebral blood flow (m-CBF) and cerebral oxygen utilization (CMRO2) in patients with ruptured intracranial aneurysm in the acute stage". W Timing of Aneurysm Surgery, 61–70. De Gruyter, 1985. http://dx.doi.org/10.1515/9783110858853-010.
Pełny tekst źródłaStreszczenia konferencji na temat "CMRO2"
Allen, M. S., T. J. Huppert i D. A. Boas. "Estimating CMRO2 with multi-modality imaging using a multi-compartment vascular model". W Biomedical Topical Meeting. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/bio.2006.tuc9.
Pełny tekst źródłaSakadžić, Sava, Mohammad A. Yaseen, Rajeshwer S. Jaswal, Emmanuel Roussakis, Anders M. Dale, Richard B. Buxton, Sergei A. Vinogradov, David A. Boas i Anna Devor. "Two-photon microscopy measurement of CMRO2 using periarteriolar PO2 gradients (Conference Presentation)". W Neural Imaging and Sensing, redaktorzy Qingming Luo i Jun Ding. SPIE, 2017. http://dx.doi.org/10.1117/12.2253690.
Pełny tekst źródłaGagnon, Louis, Sava Sakadžić, Frédéric Lesage, Philippe Pouliot, Anders M. Dale, Anna Devor, Richard B. Buxton i David A. Boas. "Improving the calibrated fMRI estimation of CMRO2 with oxygen-sensitive Two-Photon Microscopy". W Cancer Imaging and Therapy. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cancer.2016.jw3a.18.
Pełny tekst źródłaChong, Sang Hoon, Yi Hong Ong, Mirna El Khatib, Srinivasa Rao Allu, Ashwin B. Parthasarathy, Joel H. Greenberg, Arjun G. Yodh i Sergei A. Vinogradov. "Real-time measurements of pO2 gradients, CBF, and CMRO2 in the rat brain during functional activation". W Neural Imaging and Sensing 2021, redaktorzy Qingming Luo, Jun Ding i Ling Fu. SPIE, 2021. http://dx.doi.org/10.1117/12.2579418.
Pełny tekst źródłaYaseen, Mohammad A., Vivek J. Srinivasan, Sava Sakadžić, Sergei A. Vinogradov i David A. Boas. "Optically based quantification of absolute cerebral metabolic rate of oxygen (CMRO2) with high spatial resolution in rodents". W BiOS, redaktorzy Nikiforos Kollias, Bernard Choi, Haishan Zeng, Reza S. Malek, Brian J. Wong, Justus F. R. Ilgner, Kenton W. Gregory i in. SPIE, 2010. http://dx.doi.org/10.1117/12.842904.
Pełny tekst źródłaFischer, A. J., D. D. Koleske i J. R. Wendt. "Surface plasmon enhanced emission from InGaN single-quantum-well light emitting diodes". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmoo2.
Pełny tekst źródłaMutter, Lukas, Vladimir Iakovlev, Andrei Caliman, Alexandru Mereuta, Alexei Sirbu i Eli Kapon. "1.3-µm Wavelength Coupled VCSEL Arrays Employing Patterned Tunnel Junction". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmrr2.
Pełny tekst źródłaKlotzkin, David, Peter G. Goetz, William S. Rabinovich, Mike S. Ferraro, Rita Mahon i Steven C. Binari. "Integrated Angle-of-Arrival Sensing and Simultaneous Bidirectional Communication Using a Cat’s eye Modulating Retroreflector". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmo2.
Pełny tekst źródłaTsai, Meng-Tsan, Cheng-Kuang Lee, Hsiang-Chieh Lee, Yih-Ming Wang, C. C. Yang i Chun-Pin Chiang. "Effective Indicators for Oral Cancer Diagnosis Based on Optical Coherence Tomography". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/cleo.2009.cmr2.
Pełny tekst źródłaTan, Meng Peun, Ansas M. Kasten, Dominic F. Siriani, Joshua D. Sulkin i Kent D. Choquette. "Proton-Implanted 850-nm Photonic Crystal Vertical-Cavity Surface-Emitting Lasers with Improved Performance". W Conference on Lasers and Electro-Optics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/cleo.2010.cmo2.
Pełny tekst źródła