Gotowa bibliografia na temat „CMOS applications”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CMOS applications”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CMOS applications"
Banerjee, Sanjay K., Leonard Franklin Register, Emanuel Tutuc, Dipanjan Basu, Seyoung Kim, Dharmendar Reddy i Allan H. MacDonald. "Graphene for CMOS and Beyond CMOS Applications". Proceedings of the IEEE 98, nr 12 (grudzień 2010): 2032–46. http://dx.doi.org/10.1109/jproc.2010.2064151.
Pełny tekst źródłaBalaji, G. Naveen, S. Karthikeyan i M. Merlin Asha. "0.18µm CMOS Comparator for High-Speed Applications". International Journal of Trend in Scientific Research and Development Volume-1, Issue-5 (31.08.2017): 671–74. http://dx.doi.org/10.31142/ijtsrd2356.
Pełny tekst źródłaSukhavasi, Susrutha Babu, Suparshya Babu Sukhavasi, Khaled Elleithy, Shakour Abuzneid i Abdelrahman Elleithy. "CMOS Image Sensors in Surveillance System Applications". Sensors 21, nr 2 (12.01.2021): 488. http://dx.doi.org/10.3390/s21020488.
Pełny tekst źródłaFaramarzpour, Naser, Munir EL-DESOUKI, M. Deen, Qiyin Fang, Shahramshirani i L. W. C. Liu. "CMOS imaging for biomedical applications". IEEE Potentials 27, nr 3 (maj 2008): 31–36. http://dx.doi.org/10.1109/mpot.2008.916105.
Pełny tekst źródłaHosticka, B. J., W. Brockherde, A. Bussmann, T. Heimann, R. Jeremias, A. Kemna, C. Nitta i O. Schrey. "CMOS imaging for automotive applications". IEEE Transactions on Electron Devices 50, nr 1 (styczeń 2003): 173–83. http://dx.doi.org/10.1109/ted.2002.807258.
Pełny tekst źródłaMingam, H. "CMOS technologies for logic applications". Microelectronic Engineering 15, nr 1-4 (październik 1991): 243–52. http://dx.doi.org/10.1016/0167-9317(91)90222-y.
Pełny tekst źródłaHussain, Inamul, i Saurabh Chaudhury. "CNFET Based Low Power Full Adder Circuit for VLSI Applications". Nanoscience & Nanotechnology-Asia 10, nr 3 (17.06.2020): 286–91. http://dx.doi.org/10.2174/2210681209666190220122553.
Pełny tekst źródłaBolaños-Pérez, Ricardo, José Miguel Rocha-Pérez, Alejandro Díaz-Sánchez, Jaime Ramirez-Angulo i Esteban Tlelo-Cuautle. "CMOS Analog AGC for Biomedical Applications". Electronics 9, nr 5 (25.05.2020): 878. http://dx.doi.org/10.3390/electronics9050878.
Pełny tekst źródłaOHTA, Jun, Takuma KOBAYASHI, Toshihiko NODA, Kiyotaka SASAGAWA i Takashi TOKUDA. "CMOS Imaging Devices for Biomedical Applications". IEICE Transactions on Communications E94.B, nr 9 (2011): 2454–60. http://dx.doi.org/10.1587/transcom.e94.b.2454.
Pełny tekst źródłaBhuiyan, M. A. S., M. B. I. Reaz, L. F. Rahman i K. N. Minhad. "Cmos spdt switch for wlan applications". IOP Conference Series: Materials Science and Engineering 78 (2.04.2015): 012011. http://dx.doi.org/10.1088/1757-899x/78/1/012011.
Pełny tekst źródłaRozprawy doktorskie na temat "CMOS applications"
Carletti, Luca. "Photonique intégrée nonlinéaire sur plate-formes CMOS compatibles pour applications du proche au moyen infrarouge". Thesis, Ecully, Ecole centrale de Lyon, 2015. http://www.theses.fr/2015ECDL0013/document.
Pełny tekst źródłaIntegrated photonics offers a vast choice of nonlinear optical phenomena that could potentially be used for realizing chip-based and cost-effective all-optical signal processing devices that can handle, in principle, optical data signals at very high bit rates. The new components and technological solutions arising from this approach could have a considerable impact for telecom and datacom applications. Nonlinear optical effects (such as the optical Kerr effect or the Raman effect) can be potentially used for realizing active devices (e.g. optical amplifiers, modulators, lasers, signal regenerators and wavelength converters). During the last decade, the silicon on insulator (SOI) platform has known a significant development by exploiting the strong optical confinement, offered by this material platform, which is key for the miniaturization and realization of integrated optical devices (such as passive filters, splitters, junctions and multiplexers). However, the presence of strong nonlinear losses in the standard telecom band (around 1.55 µm) prevents some applications where a strong nonlinear optical response is needed and has motivated the research of more suitable material platforms. The primary goal of this thesis was the study of material alternatives to crystalline silicon (for instance hydrogenated amorphous silicon) with very low nonlinear losses and compatible with the CMOS process in order to realize integrated photonics devices based on nonlinear optical phenomena. Alternatively, the use of longer wavelengths (in the mid-IR) relaxes the constraints on the choice of the material platform, through taking advantage of lower nonlinear losses, for instance on the SiGe platform, which is also explored in this thesis. This work is organized as follows. In the first chapter we provide an overview of the nonlinear optical effects used to realize all optical signal processing functions, focusing on the key parameters that are essential (optical confinement and dispersion engineering) for integrated optical components, and presenting the main models used in this thesis. This chapter also includes a review of the main demonstrations reported on crystalline silicon, to give some benchmarks. Chapter 2 introduces the use of photonic crystals as integrated optical structures that can significantly enhance nonlinear optical phenomena. First we present photonic crystal cavities, with a demonstration of second and third harmonic generation that makes use of an original design. In the second part of the chapter, we describe the main features and challenges associated with photonic crystal waveguides in the slow light regime, which will be used later in chapter 4. In chapter 3, we report the experimental results related to the characterization of the optical nonlinear response of integrated waveguides made of two materials that are alternative to crystalline silicon : the hydrogenated amorphous silicon, probed in the near infrared, and the silicon germanium, probed in the mid-infrared. The model presented in chapter 1 is extensively used here for extracting the nonlinear parameters of these materials and it is also extended to account for higher order nonlinearities in the case of silicon germanium tested at longer wavelengths. This chapter also includes a comparison of the nonlinear properties of these two material platforms with respect to the standard SOI. In chapter 4, we combine the use of a material platform that is better suited than SOI for nonlinear applications with integrated photonics structures that are more advanced that those used in chapter 3. Here we describe the design of (slow) modes in photonic crystal waveguides made in hydrogenated amorphous silicon fully embedded in silica. [...]
ALLEGRI, DANIELE GUIDO. "CMOS-Based Impedance Analyzer for Biomedical Applications". Doctoral thesis, Università degli studi di Pavia, 2017. http://hdl.handle.net/11571/1215968.
Pełny tekst źródłaMuhammad, Wasim. "CMOS LNA Design for Multi-Standard Applications". Thesis, Linköping University, Department of Electrical Engineering, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-7841.
Pełny tekst źródłaThis thesis discusses design of narrowband low noise amplifiers for multi¬standard applications. The target of this work is to design a low noise ampli¬fier(LNA) for DCS1800 and Bluetooth standard frequency bands. Various designs for narrowband multi-standard LNAs have been studied and a new design for tunable multi-standard LNA has been presented and designed using accumulation mode MOS varactors.
As this design includes on-chip spiral inductors, the design, modelling and layout of on-chip inductors have been discussed briefly. The tool used for this purpose is ASITIC.
Also ESD protection techniques for RF circuits and their effect on LNA per¬formance has been discussed.
Finally fully differential LNA has been designed in O.35um AMS thick metal CMOS process using Cadence SpectreRF. The design also includes ESD pro¬tection at the input of LNA.
Scholvin, Jörg 1976. "Deeply scaled CMOS for RF power applications". Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/37904.
Pełny tekst źródłaIncludes bibliographical references (p. 117-140).
The microelectronics industry is striving to reduce the cost, complexity, and form factor of wireless systems through single-chip integration of analog, RF and digital functions. Driven by the requirements of the digital system components, the 90 nm and 65 nm technology nodes are currently emerging as platforms for highly integrated systems. Achieving such integration while minimizing the cost of adding specialized RF modules places high demands on the base CMOS technology. In this regard, the integration of the power amplifier (PA) function becomes an increasing challenge as technology geometries and supply voltages scale down. Gate length (Lg) scaling yields improved frequency response, promising higher power-added efficiency (PAE), a key RF PA consideration. This benefit comes at the cost of a lower drain voltage, which demands a higher output current and thus wider devices in order to produce a given output power level (Po,,). In this work, we have investigated the potential of deeply scaled CMOS for RF power applications, from 0.25 um down to 65 nm. We demonstrate the frequency and power limitations that the different CMOS technologies face, and describe the physical mechanisms that give rise to these limitations.
(cont.) We find that layout considerations, such as splitting a single large device into many smaller parallel devices, become increasingly important as the technology scales down the roadmap, both for power and frequency. We also show that parasitic resistances associated with the back-end wiring are responsible for placing an upper limit on the RF power that can be obtained for a single bond pad. We demonstrate a power density of 31 mW/mm for the 65 nm node, with PAE in excess of 60% at 4 GHz and 1 V. Similar results are obtained in 90 nm, where a peak PAE of 66% was measured at 2.2 GHz and 1 V, with a power density of 24 mW/mm. We find that efficient integrated PA functionality for many applications can be achieved even in a deeply-scaled logic CMOS technology. For low power levels (below 50 mW), we find that the 65 nm CMOS devices offer excellent efficiency (>50%) over a broad frequency range (2-8 GHz). Their RF power performance approaches that of 90 nm devices both in peak PAE and output power density. This is possible without costly PA-specific add-ons, or the use of higher voltage input-output (I/O) device options.
(cont.) However, since I/O devices are often included as part of the process, they represent a real option for PA integration because they allow for higher power densities. The 0.25 /xm I/O device that is available in the 90 nm process, when biased at Vdd = 2.5 V showed excellent results, with a peak PAE of 60% and an output power of 75 mW (125 mW/mm) at 8 GHz.
by Jörg Scholvin.
Ph.D.
Bardyn, Jean-Paul. "Amplificateurs CMOS faible bruit pour applications sonar". Lille 1, 1990. http://www.theses.fr/1990LIL10167.
Pełny tekst źródłaChao, Yu-Lin. "Germanium channel devices for nanoscale CMOS applications". Diss., Restricted to subscribing institutions, 2008. http://proquest.umi.com/pqdweb?did=1581637981&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Pełny tekst źródłaCzornomaz, Lukas. "Filière technologique hybride InGaAs/SiGe pour applications CMOS". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT013/document.
Pełny tekst źródłaHigh-mobility channel materials such as indium-galium-arsenide (InGaAs) and silicon-germanium(SiGe) alloys are considered to be the leading candidates for replacing silicon (Si) in future lowpower complementary metal-oxide-semiconductor (CMOS) circuits. Numerous challenges haveto be tackled in order to turn the high-mobility CMOS concept into an industrial solution. Thisthesis addresses the majors challenges which are the integration of InGaAs on Si, the formationof high-quality gate stacks and self-aligned source and drain (S/D) regions, the optimizationof self-aligned transistors and the co-integration of InGaAs and SiGe into CMOS circuits. Allinvestigated possible solutions are proposed in the framework of very-large-scale integration requirements.Chapter 2 describes two different methods to integrate InGaAs on Si. Chapter 3 detailsthe developments of key process modules for the fabrication of self-aligned InGaAs metal-oxidesemiconductorfield-effect transistors (MOSFETs). Chapter 4 covers the realization of varioustypes of self-aligned MOSFETs towards the improvement of their performance. Finally, chapter5 demonstrates three different methods to make hybrid InGaAs/SiGe CMOS circuits
Dryer, Benjamin James. "Characterisation of CMOS APS technologies for space applications". Thesis, Open University, 2013. http://oro.open.ac.uk/40637/.
Pełny tekst źródłaKim, Hyung-Seuk 1976. "Low voltage CMOS frequency synthesizers for RF applications". Thesis, McGill University, 2005. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82607.
Pełny tekst źródłaEsteves, J. "La technologie CMOS-MEMS pour des applications acoustiques". Phd thesis, Université de Grenoble, 2013. http://tel.archives-ouvertes.fr/tel-01068940.
Pełny tekst źródłaKsiążki na temat "CMOS applications"
Ohta, Jun. Smart CMOS image sensors and applications. Boca Raton: CRC Press, 2008.
Znajdź pełny tekst źródłaJamal, Deen M., i Fjeldly Tor A, red. CMOS RF modeling, characterization and applications. River Edge, N.J: World Scientific, 2002.
Znajdź pełny tekst źródłaYoussef, Ahmed A., i James Haslett. Nanometer CMOS RFICs for Mobile TV Applications. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-8604-4.
Pełny tekst źródłaYoussef, Ahmed A. Nanometer CMOS RFICs for mobile TV applications. Dordrecht: Springer, 2010.
Znajdź pełny tekst źródłaDal Fabbro, Paulo Augusto, i Maher Kayal. Linear CMOS RF Power Amplifiers for Wireless Applications. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9361-5.
Pełny tekst źródłaGhafar-Zadeh, Ebrahim, i Mohamad Sawan. CMOS Capacitive Sensors for Lab-on-Chip Applications. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-3727-5.
Pełny tekst źródłaLimited, Mullard. High-speed CMOS: Designer's guide and applications handbook. London: Mullard, 1986.
Znajdź pełny tekst źródłaYuan, Fei. CMOS active inductors and transformers: Principle, implementation, and applications. New York: Springer, 2008.
Znajdź pełny tekst źródłaYe, Song. 1 V, 1.9 GHz CMOS mixers for wireless applications. Ottawa: National Library of Canada, 2001.
Znajdź pełny tekst źródłaMohammadi, Behnam. A 5.8 GHz CMOS low noise amplifier for WLAN applications. Ottawa: National Library of Canada, 2003.
Znajdź pełny tekst źródłaCzęści książek na temat "CMOS applications"
Ghafar-Zadeh, Ebrahim. "CMOS Capacitive Biointerfaces for Lab-on-Chip Applications". W CMOS Biomicrosystems, 215–38. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118016497.ch8.
Pełny tekst źródłaSiu, Christopher. "PMOS and CMOS". W Electronic Devices, Circuits, and Applications, 121–37. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-80538-8_7.
Pełny tekst źródłaGharavi, Sam, Frank Chang i Mohammed H. Gharavi. "Imaging Applications". W Ultra High-Speed CMOS Circuits, 81–104. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0305-0_7.
Pełny tekst źródłaWang, Zhihua, Xiang Xie, Xinkai Chen i Xiaowen Li. "Design Considerations of Low-Power Digital Integrated Systems for Implantable Medical Applications". W CMOS Biomicrosystems, 119–62. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118016497.ch5.
Pełny tekst źródłaSeo, Sungkyu, Ting-Wei Su, Anthony Erlinger i Aydogan Ozcan. "Lensfree Imaging Cytometry and Diagnostics for Point-of-Care and Telemedicine Applications". W CMOS Biomicrosystems, 239–67. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118016497.ch9.
Pełny tekst źródłaEl-Khatib, Ziad, Leonard MacEachern i Samy A. Mahmoud. "Distributed RF Linearization Circuit Applications". W Distributed CMOS Bidirectional Amplifiers, 47–70. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-0272-5_4.
Pełny tekst źródłaZhang, Lining, Chenyue Ma, Xinnan Lin, Jin He i Mansun Chan. "Modeling FinFETs for CMOS Applications". W Lecture Notes in Nanoscale Science and Technology, 263–84. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02021-1_11.
Pełny tekst źródłaGhosh, Sumalya, Ashis Kumar Mal i Surajit Mal. "Amplifier Design Optimization in CMOS". W Intelligent Computing and Applications, 287–97. New Delhi: Springer India, 2015. http://dx.doi.org/10.1007/978-81-322-2268-2_31.
Pełny tekst źródłaRoy, Saibal, Jeffrey Godsell i Tuhin Maity. "Nanostructured Magnetic Materials for High-Frequency Applications". W Beyond-CMOS Nanodevices 1, 457–83. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2014. http://dx.doi.org/10.1002/9781118984772.ch15.
Pełny tekst źródłaCraninckx, J., i G. Van der Plas. "Low-Power ADCs for Bio-Medical Applications". W Bio-Medical CMOS ICs, 157–90. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6597-4_5.
Pełny tekst źródłaStreszczenia konferencji na temat "CMOS applications"
Ji Chen i Juin J. Liou. "CMOS technology-based spiral inductors for RF applications". W 2006 International Workshop on Nano CMOS (IWNC). IEEE, 2006. http://dx.doi.org/10.1109/iwnc.2006.4570986.
Pełny tekst źródłaKenji Kimura, Zhao Ming, Kaoru Nakajima i Motofumi Suzuki. "High-resolution Rutherford backscattering spectroscopy for Nano-CMOS applications". W 2006 International Workshop on Nano CMOS (IWNC). IEEE, 2006. http://dx.doi.org/10.1109/iwnc.2006.4570980.
Pełny tekst źródłaPrzewlocki, Henryk M. "New applications of internal photoemission to determine basic MOS system parameters". W 2006 International Workshop on Nano CMOS (IWNC). IEEE, 2006. http://dx.doi.org/10.1109/iwnc.2006.4570989.
Pełny tekst źródłaGunn, Cary. "CMOS Photonics". W Integrated Photonics Research and Applications. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/ipra.2006.itub5.
Pełny tekst źródłaReed, Mark A. "CMOS biosensor devices and applications". W 2013 IEEE International Electron Devices Meeting (IEDM). IEEE, 2013. http://dx.doi.org/10.1109/iedm.2013.6724587.
Pełny tekst źródłaWang, Weng Lyang, i Shengmin Lin. "CMOS sensor for RSI applications". W SPIE Asia-Pacific Remote Sensing, redaktorzy Haruhisa Shimoda, Xiaoxiong Xiong, Changyong Cao, Xingfa Gu, Choen Kim i A. S. Kiran Kumar. SPIE, 2012. http://dx.doi.org/10.1117/12.977606.
Pełny tekst źródłaCurrent, Michael I., Russel A. Martin, Kyriakos Doganis i Richard H. Bruce. "MeV Implantation For CMOS Applications". W 1985 Los Angeles Technical Symposium, redaktorzy Michael I. Current i Devindra K. Sadana. SPIE, 1985. http://dx.doi.org/10.1117/12.946463.
Pełny tekst źródłaFabel, B., T. Maul, L. Nowack, M. Sterkel i W. Hansch. "Emerging CMOS-Devices and Applications". W 2007 International Symposium on Integrated Circuits. IEEE, 2007. http://dx.doi.org/10.1109/isicir.2007.4441873.
Pełny tekst źródłaSekitani, Tsuyoshi, Koichi Ishida, Ute Zschieschang, Hagen Klauk, Makoto Takamiya, Takayasu Sakurai i Takao Someya. "Large-area stretchable sensors with integrating organic CMOS ICs with Si-CMOS LSIs". W SPIE Photonic Devices + Applications, redaktorzy Ruth Shinar i Ioannis Kymissis. SPIE, 2010. http://dx.doi.org/10.1117/12.861019.
Pełny tekst źródłaZhang, Bohan, Mark Schiller, Kenaish Al Qubaisi, Deniz Onural, Anatol Khilo, Michael J. Naughton i Miloš A. Popović. "Polarization-Insensitive One-Dimensional Grating Coupler Demonstrated in a CMOS-Photonics Foundry Platform". W CLEO: Applications and Technology. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_at.2022.jth3a.46.
Pełny tekst źródłaRaporty organizacyjne na temat "CMOS applications"
Mirow, Fred, i Dick Mabry. Precision CMOS Clock Oscillator for HI-G Applications. Fort Belvoir, VA: Defense Technical Information Center, kwiecień 2001. http://dx.doi.org/10.21236/ada386050.
Pełny tekst źródłaPotok, Thomas, Catherine Schuman, Robert Patton, Todd Hylton, Hai Li i Robinson Pino. Neuromorphic Computing, Architectures, Models, and Applications. A Beyond-CMOS Approach to Future Computing, June 29-July 1, 2016, Oak Ridge, TN. Office of Scientific and Technical Information (OSTI), grudzień 2016. http://dx.doi.org/10.2172/1341738.
Pełny tekst źródłaNuckolls, L. CMOS ASIC (application specific integrated circuit). Office of Scientific and Technical Information (OSTI), lipiec 1989. http://dx.doi.org/10.2172/5551185.
Pełny tekst źródłaTurner, S., R. Housley i J. Schaad. The application/cms Media Type. RFC Editor, kwiecień 2014. http://dx.doi.org/10.17487/rfc7193.
Pełny tekst źródłaLi, Honghai, Lihwa Lin, Cody Johnson, Yan Ding, Mitchell Brown, Tanya Beck, Alejandro Sánchez i Weiming Wu. A revisit and update on the verification and validation of the Coastal Modeling System (CMS) : report 1--hydrodynamics and waves. Engineer Research and Development Center (U.S.), wrzesień 2022. http://dx.doi.org/10.21079/11681/45444.
Pełny tekst źródłaShen, Gianetto i Tyson. L52342 Development of Procedure for Low-Constraint Toughness Testing Using a Single-Specimen Technique. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), grudzień 2011. http://dx.doi.org/10.55274/r0010687.
Pełny tekst źródła