Artykuły w czasopismach na temat „Closed Thermal Cycles”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Closed Thermal Cycles”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Garcia, Ramon. "Contributions on Closed System Transformations Based Thermal Cycles". British Journal of Applied Science & Technology 4, nr 19 (10.01.2014): 2821–36. http://dx.doi.org/10.9734/bjast/2014/10074.
Pełny tekst źródłaFerreiro Garcia, Ramon, i Dr Jose Carbia Carril. "Analysis of a thermal cycle that surpass Carnot efficiency undergoing closed polytropic transformations". JOURNAL OF ADVANCES IN PHYSICS 15 (19.02.2019): 6165–82. http://dx.doi.org/10.24297/jap.v15i0.8029.
Pełny tekst źródłaDumitrașcu, Gheorghe, Michel Feidt i Ştefan Grigorean. "Finite Physical Dimensions Thermodynamics Analysis and Design of Closed Irreversible Cycles". Energies 14, nr 12 (9.06.2021): 3416. http://dx.doi.org/10.3390/en14123416.
Pełny tekst źródłaRogalev, Nikolay, Andrey Rogalev, Vladimir Kindra, Olga Zlyvko i Pavel Bryzgunov. "Review of Closed SCO2 and Semi-Closed Oxy–Fuel Combustion Power Cycles for Multi-Scale Power Generation in Terms of Energy, Ecology and Economic Efficiency". Energies 15, nr 23 (5.12.2022): 9226. http://dx.doi.org/10.3390/en15239226.
Pełny tekst źródłaDumitrascu, Gheorghe, Michel Feidt i Stefan Grigorean. "Closed Irreversible Cycles Analysis Based on Finite Physical Dimensions Thermodynamics". Proceedings 58, nr 1 (11.09.2020): 37. http://dx.doi.org/10.3390/wef-06905.
Pełny tekst źródłaShen, Qiang, Chang Lian Chen, Fei Chen, Qi Wen Liu i Lian Meng Zhang. "Thermal Shock Behavior of Calcia Stabilized Zirconia Ceramics with Porosity Gradient Structure". Materials Science Forum 631-632 (październik 2009): 435–40. http://dx.doi.org/10.4028/www.scientific.net/msf.631-632.435.
Pełny tekst źródłaBurugupally, Sindhu Preetham. "Evaluation of a Combustion-Based Mesoscale Thermal Actuator in Open and Closed Operating Cycles". Actuators 8, nr 4 (23.10.2019): 73. http://dx.doi.org/10.3390/act8040073.
Pełny tekst źródłaItoh, Y. Z., i H. Kashiwaya. "A Study of Cyclic Thermal Straining in a Welded Joint, Using a Closed-Loop, Servo-Controlled Testing Machine". Journal of Pressure Vessel Technology 114, nr 4 (1.11.1992): 422–27. http://dx.doi.org/10.1115/1.2929249.
Pełny tekst źródłaAmann, Charles A. "Applying Thermodynamics in Search of Superior Engine Efficiency". Journal of Engineering for Gas Turbines and Power 127, nr 3 (24.06.2005): 670–75. http://dx.doi.org/10.1115/1.1804537.
Pełny tekst źródłaKhaliq, A. "Finite-Thermal Reservoir Effects on Ecologically Optimized Closed Regenerative Joule-Brayton Power Cycles". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 220, nr 5 (11.07.2006): 425–34. http://dx.doi.org/10.1243/09576509jpe189.
Pełny tekst źródłaLeung, E. Y. W. "A Universal Correlation for the Thermal Efficiency of Open Gas Turbine Cycle With Different Fuels". Journal of Engineering for Gas Turbines and Power 107, nr 3 (1.07.1985): 560–65. http://dx.doi.org/10.1115/1.3239772.
Pełny tekst źródłaTacconi, J., W. P. J. Visser i D. Verstraete. "Multi-objective optimisation of semi-closed cycle engines for high-altitude UAV propulsion". Aeronautical Journal 123, nr 1270 (7.08.2019): 1938–58. http://dx.doi.org/10.1017/aer.2019.62.
Pełny tekst źródłaLiu, Weimin, Xiaojian Xu, Fengyun Chen, Yanjun Liu, Shizhen Li, Lei Liu i Yun Chen. "A review of research on the closed thermodynamic cycles of ocean thermal energy conversion". Renewable and Sustainable Energy Reviews 119 (marzec 2020): 109581. http://dx.doi.org/10.1016/j.rser.2019.109581.
Pełny tekst źródłaCarril, José Carbia, Álvaro Baaliña Insua, Javier Romero Gómez i Manuel Romero Gómez. "HTR-Based Power Plants’ Performance Analysis Applied on Conventional Combined Cycles". Science and Technology of Nuclear Installations 2015 (2015): 1–11. http://dx.doi.org/10.1155/2015/716572.
Pełny tekst źródłaNewaz, G. M., B. S. Majumdar i F. W. Brust. "Thermal Cycling Response of Quasi-Isotropic Metal Matrix Composites". Journal of Engineering Materials and Technology 114, nr 2 (1.04.1992): 156–61. http://dx.doi.org/10.1115/1.2904155.
Pełny tekst źródłaFlorez, Frank, Pedro Fernández de Córdoba, José Luis Higón, Gerard Olivar i John Taborda. "Modeling, Simulation, and Temperature Control of a Thermal Zone with Sliding Modes Strategy". Mathematics 7, nr 6 (2.06.2019): 503. http://dx.doi.org/10.3390/math7060503.
Pełny tekst źródłaBontempo, R., i M. Manna. "Efficiency optimisation of advanced gas turbine recuperative-cycles". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, nr 6 (1.10.2019): 817–35. http://dx.doi.org/10.1177/0957650919875909.
Pełny tekst źródłaОvchinnikova, M. V., A. G. Mikhailova, D. M. Karlinsky, V. А. Gorlenko i L. D. Rumsh. "Reversible Cyclic Thermal Inactivation of Oligopeptidase B from Serratia proteamaculans". Acta Naturae 10, nr 2 (15.06.2018): 65–70. http://dx.doi.org/10.32607/20758251-2018-10-2-65-70.
Pełny tekst źródłaAgazzani, A., A. F. Massardo i T. Korakianitis. "An Assessment of the Performance of Closed Cycles With and Without Heat Rejection at Cryogenic Temperatures". Journal of Engineering for Gas Turbines and Power 121, nr 3 (1.07.1999): 458–65. http://dx.doi.org/10.1115/1.2818495.
Pełny tekst źródłaHofer, Markus, Frieder Hecker, Michael Buck i Jörg Starflinger. "Start-up, operation and thermal-hydraulic analysis of a self-propelling supercritical CO2 heat removal system coupled to a pressurized water reactor". EPJ Nuclear Sciences & Technologies 8 (2022): 34. http://dx.doi.org/10.1051/epjn/2022039.
Pełny tekst źródłaInvernizzi, Costante Mario, i Gioele Di Marcoberardino. "An Overview of Real Gas Brayton Power Cycles: Working Fluids Selection and Thermodynamic Implications". Energies 16, nr 10 (9.05.2023): 3989. http://dx.doi.org/10.3390/en16103989.
Pełny tekst źródłaKIM, YOUNG MIN, DONG GIL SHIN, SANG TAE LEE i DANIEL FAVRAT. "THERMODYNAMIC ANALYSIS OF A CLOSED BRAYTON/ERICSSON CYCLE ENGINE WITH SCROLL MACHINES". International Journal of Air-Conditioning and Refrigeration 18, nr 04 (grudzień 2010): 279–87. http://dx.doi.org/10.1142/s2010132510000277.
Pełny tekst źródłaKubíková, Tereza. "ORC and sCO2 cycle for high temperature WHR applications". MATEC Web of Conferences 367 (2022): 00016. http://dx.doi.org/10.1051/matecconf/202236700016.
Pełny tekst źródłaIbrahim, O. M., S. A. Klein i J. W. Mitchell. "Optimum Heat Power Cycles for Specified Boundary Conditions". Journal of Engineering for Gas Turbines and Power 113, nr 4 (1.10.1991): 514–21. http://dx.doi.org/10.1115/1.2906271.
Pełny tekst źródłaLangston, Lee S. "Is there a Supercharged Gas Turbine in your Future?" Mechanical Engineering 137, nr 05 (1.05.2015): 58–59. http://dx.doi.org/10.1115/1.2015-may-5.
Pełny tekst źródłaDi Ronco, Andrea, Francesca Giacobbo, Guglielmo Lomonaco, Stefano Lorenzi, Xiang Wang i Antonio Cammi. "Preliminary Analysis and Design of the Energy Conversion System for the Molten Salt Fast Reactor". Sustainability 12, nr 24 (15.12.2020): 10497. http://dx.doi.org/10.3390/su122410497.
Pełny tekst źródłaLangwieser, Johanna, Andrea Schweighuber, Alexander Felgel-Farnholz, Christian Marschik, Wolfgang Buchberger i Joerg Fischer. "Determination of the Influence of Multiple Closed Recycling Loops on the Property Profile of Different Polyolefins". Polymers 14, nr 12 (15.06.2022): 2429. http://dx.doi.org/10.3390/polym14122429.
Pełny tekst źródłaChen, Lingen, Chenqi Tang, Huijun Feng i Yanlin Ge. "Power, Efficiency, Power Density and Ecological Function Optimization for an Irreversible Modified Closed Variable-Temperature Reservoir Regenerative Brayton Cycle with One Isothermal Heating Process". Energies 13, nr 19 (2.10.2020): 5133. http://dx.doi.org/10.3390/en13195133.
Pełny tekst źródłaPatel, Raj C., Diego C. Bass, Ganza Prince Dukuze, Angelina Andrade i Christopher S. Combs. "Analysis and Development of a Small-Scale Supercritical Carbon Dioxide (sCO2) Brayton Cycle". Energies 15, nr 10 (13.05.2022): 3580. http://dx.doi.org/10.3390/en15103580.
Pełny tekst źródłaAlhmoud, Lina, i Ali Khudhair Al-Jiboory. "Insulated-gate bipolar transistor junction temperature estimation based on ℋ∞ robust controller in wind energy applications". Wind Engineering 44, nr 5 (27.09.2019): 548–58. http://dx.doi.org/10.1177/0309524x19877645.
Pełny tekst źródłaChoi, Sungwook, In Woo Son i Jeong Ik Lee. "Comparative Performance Evaluation of Gas Brayton Cycle for Micro–Nuclear Reactors". Energies 16, nr 4 (20.02.2023): 2065. http://dx.doi.org/10.3390/en16042065.
Pełny tekst źródłaRUSU, MIHAELA, IULIA SALAORU, M. E. POPA i G. I. RUSU. "ON THE OPTICAL CHARACTERISTICS OF CdS THIN FILMS DEPOSITED BY QUASI-CLOSED VOLUME TECHNIQUE". International Journal of Modern Physics B 18, nr 09 (10.04.2004): 1287–97. http://dx.doi.org/10.1142/s0217979204024616.
Pełny tekst źródłaSkaltsounis, Panagiotis, George Kokkoris, Theodoros G. Papaioannou i Angeliki Tserepi. "Closed-Loop Microreactor on PCB for Ultra-Fast DNA Amplification: Design and Thermal Validation". Micromachines 14, nr 1 (10.01.2023): 172. http://dx.doi.org/10.3390/mi14010172.
Pełny tekst źródłaHahn, Jaeseung, i William M. Shih. "Thermal cycling of DNA devices via associative strand displacement". Nucleic Acids Research 47, nr 20 (4.10.2019): 10968–75. http://dx.doi.org/10.1093/nar/gkz844.
Pełny tekst źródłaAltgen, Michael, i Holger Militz. "Influence of process conditions on hygroscopicity and mechanical properties of European beech thermally modified in a high-pressure reactor system". Holzforschung 70, nr 10 (1.10.2016): 971–79. http://dx.doi.org/10.1515/hf-2015-0235.
Pełny tekst źródłaSammoutos, Christos, Angeliki Kitsopoulou, Panagiotis Lykas, Evangelos Bellos i Christos Tzivanidis. "Dynamic Investigation of a Solar-Driven Brayton Cycle with Supercritical CO2". Applied System Innovation 6, nr 4 (10.08.2023): 71. http://dx.doi.org/10.3390/asi6040071.
Pełny tekst źródłaWalker, H. A., i J. H. Davidson. "Analysis and Simulation of a Two-Phase Self-Pumping Water Heater". Journal of Solar Energy Engineering 112, nr 3 (1.08.1990): 153–60. http://dx.doi.org/10.1115/1.2930474.
Pełny tekst źródłaDwijayanto, R. Andika Putra. "Sustainability of Nuclear Fuel Resources in Indonesia with Open and Closed Fuel Cycle". Sustainability Science and Resources 4 (15.07.2023): 47–59. http://dx.doi.org/10.55168/ssr2809-6029.2023.4004.
Pełny tekst źródłaMa, Zheshu, i Jieer Wu. "Efficiency optimization of a closed indirectly fired gas turbine cycle working under two variable-temperature heat reservoirs". Archives of Thermodynamics 32, nr 2 (1.08.2011): 3–20. http://dx.doi.org/10.2478/v10173-011-0006-4.
Pełny tekst źródłaNicoletto, Carlo, Valentina Falcioni, Silvia Locatelli i Paolo Sambo. "Non-Thermal Plasma and Soilless Nutrient Solution Application: Effects on Nutrient Film Technique Lettuce Cultivation". Horticulturae 9, nr 2 (4.02.2023): 208. http://dx.doi.org/10.3390/horticulturae9020208.
Pełny tekst źródłaKomarov, Ivan, Vladimir Kindra, Dmitry Pisarev, Dmitriy Kovalev i Dmitriy Lvov. "Thermodynamic Analysis of the Low-Grade Heat Sources for the Improvement in Efficiency of Oxy–Fuel Combustion Power Cycles". Inventions 8, nr 1 (10.01.2023): 16. http://dx.doi.org/10.3390/inventions8010016.
Pełny tekst źródłaMills, Brantley H., Clifford K. Ho, Nathaniel R. Schroeder, Reid Shaeffer, Hendrik F. Laubscher i Kevin J. Albrecht. "Design Evaluation of a Next-Generation High-Temperature Particle Receiver for Concentrating Solar Thermal Applications". Energies 15, nr 5 (23.02.2022): 1657. http://dx.doi.org/10.3390/en15051657.
Pełny tekst źródłaStachowicz, M., i K. Granat. "Possibilities of Reclamation Microwave-Hardened Molding Sands with Water Glass". Archives of Metallurgy and Materials 59, nr 2 (1.06.2014): 757–60. http://dx.doi.org/10.2478/amm-2014-0127.
Pełny tekst źródłaPiwowarski, Marian. "Design analysis of ORC micro-turbines making use of thermal energy of oceans". Polish Maritime Research 20, nr 2 (1.04.2013): 48–60. http://dx.doi.org/10.2478/pomr-2013-0016.
Pełny tekst źródłaPodolak, Marian, Dariusz Mana i Stanislaw Przestalski. "ESR Study of the Liposome Membrane Physical Parameters in the Heating-Cooling Cycles". Zeitschrift für Naturforschung C 53, nr 3-4 (1.04.1998): 191–96. http://dx.doi.org/10.1515/znc-1998-3-408.
Pełny tekst źródłaTraverso, Alberto, Federico Calzolari i Aristide Massardo. "Transient Analysis of and Control System for Advanced Cycles Based on Micro Gas Turbine Technology". Journal of Engineering for Gas Turbines and Power 127, nr 2 (1.04.2005): 340–47. http://dx.doi.org/10.1115/1.1839918.
Pełny tekst źródłaSohn, Yoonchul, Dongouk Kim, Sangeui Lee, Jae Yong Song, Sunghoon Park, Hajin Kim, Youngchul Ko, Kunmo Chu i Intaek Han. "Correlation between Thermo-mechanical Reliability and Superhydrophobic Nature of CNT Composite Coatings". International Symposium on Microelectronics 2014, nr 1 (1.10.2014): 000086–91. http://dx.doi.org/10.4071/isom-ta34.
Pełny tekst źródłaBeck, Tilmann, Karl-Heinz Lang, Otmar Vöhringer i Detlef Löhe. "Experimental Analysis of the Interaction of “Hot” and “Cold” Volume Elements during Thermal Fatigue of a Cooled Component Made from AISI 3161 Steel". International Journal of Materials Research 92, nr 8 (1.08.2001): 875–81. http://dx.doi.org/10.1515/ijmr-2001-0160.
Pełny tekst źródłaAngelino, G., i C. Invernizzi. "Real gas Brayton cycles for organic working fluids". Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 215, nr 1 (1.02.2001): 27–38. http://dx.doi.org/10.1243/0957650011536543.
Pełny tekst źródłaGorokhovsky, Alexander V., Gleb Yu Yurkov, Igor N. Burmistrov, Angel F. Villalpando-Reyna, Denis V. Kuznetsov, Alexander A. Gusev, Bekzod B. Khaidarov, Yuri V. Konyukhov, Olga V. Zakharova i Nikolay V. Kiselev. "Glass-Ceramic Protective Coatings Based on Metallurgical Slag". Coatings 13, nr 2 (24.01.2023): 269. http://dx.doi.org/10.3390/coatings13020269.
Pełny tekst źródła