Artykuły w czasopismach na temat „Classification of biomedical time series”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Classification of biomedical time series”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Ramanujam, E., i S. Padmavathi. "Genetic time series motif discovery for time series classification". International Journal of Biomedical Engineering and Technology 31, nr 1 (2019): 47. http://dx.doi.org/10.1504/ijbet.2019.101051.
Pełny tekst źródłaJin, Lin-peng, i Jun Dong. "Ensemble Deep Learning for Biomedical Time Series Classification". Computational Intelligence and Neuroscience 2016 (2016): 1–13. http://dx.doi.org/10.1155/2016/6212684.
Pełny tekst źródłaIvaturi, Praharsh, Matteo Gadaleta, Amitabh C. Pandey, Michael Pazzani, Steven R. Steinhubl i Giorgio Quer. "A Comprehensive Explanation Framework for Biomedical Time Series Classification". IEEE Journal of Biomedical and Health Informatics 25, nr 7 (lipiec 2021): 2398–408. http://dx.doi.org/10.1109/jbhi.2021.3060997.
Pełny tekst źródłaWang, Jin, Ping Liu, Mary F. H. She, Saeid Nahavandi i Abbas Kouzani. "Bag-of-words representation for biomedical time series classification". Biomedical Signal Processing and Control 8, nr 6 (listopad 2013): 634–44. http://dx.doi.org/10.1016/j.bspc.2013.06.004.
Pełny tekst źródłaKu-Maldonado, Carlos Alejandro, i Erik Molino-Minero-Re. "Performance Evaluation of Biomedical Time Series Transformation Methods for Classification Tasks". Revista Mexicana de Ingeniería Biomédica 44, nr 4 (17.08.2023): 105–16. http://dx.doi.org/10.17488/rmib.44.4.7.
Pełny tekst źródłaGupta, R., A. Mittal, K. Singh, V. Narang i S. Roy. "Time-series approach to protein classification problem". IEEE Engineering in Medicine and Biology Magazine 28, nr 4 (lipiec 2009): 32–37. http://dx.doi.org/10.1109/memb.2009.932903.
Pełny tekst źródłaWang, Will Ke, Ina Chen, Leeor Hershkovich, Jiamu Yang, Ayush Shetty, Geetika Singh, Yihang Jiang i in. "A Systematic Review of Time Series Classification Techniques Used in Biomedical Applications". Sensors 22, nr 20 (20.10.2022): 8016. http://dx.doi.org/10.3390/s22208016.
Pełny tekst źródłaLemus, Mariano, João P. Beirão, Nikola Paunković, Alexandra M. Carvalho i Paulo Mateus. "Information-Theoretical Criteria for Characterizing the Earliness of Time-Series Data". Entropy 22, nr 1 (30.12.2019): 49. http://dx.doi.org/10.3390/e22010049.
Pełny tekst źródłaAthavale, Yashodhan, Sridhar Krishnan i Aziz Guergachi. "Pattern Classification of Signals Using Fisher Kernels". Mathematical Problems in Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/467175.
Pełny tekst źródłaCarreiro, André V., Orlando Anunciação, João A. Carriço i Sara C. Madeira. "Prognostic Prediction through Biclustering-Based Classification of Clinical Gene Expression Time Series". Journal of Integrative Bioinformatics 8, nr 3 (1.12.2011): 73–89. http://dx.doi.org/10.1515/jib-2011-175.
Pełny tekst źródłaPiepjohn, Patricia, Christin Bald, Gregor Kuhlenbäumer, Jos Steffen Becktepe, Günther Deuschl i Gerhard Schmidt. "Real-time classification of movement patterns of tremor patients". Biomedical Engineering / Biomedizinische Technik 67, nr 2 (24.02.2022): 119–30. http://dx.doi.org/10.1515/bmt-2021-0140.
Pełny tekst źródłaFulcher, Ben D., Max A. Little i Nick S. Jones. "Highly comparative time-series analysis: the empirical structure of time series and their methods". Journal of The Royal Society Interface 10, nr 83 (6.06.2013): 20130048. http://dx.doi.org/10.1098/rsif.2013.0048.
Pełny tekst źródłaGamidullaeva, Leyla Ayvarovna, i Vsevolod Chernyshenko. "Using Decision-Making Block of Computer-Based Intelligent Biomedical Avatar for Applied Research in Bioinformatics". International Journal of Applied Research in Bioinformatics 9, nr 2 (lipiec 2019): 24–34. http://dx.doi.org/10.4018/ijarb.2019070102.
Pełny tekst źródłaAlarcón, Ángel Serrano, Natividad Martínez Madrid, Ralf Seepold i Juan Antonio Ortega Ramirez. "Main requirements of end-to-end deep learning models for biomedical time series classification in healthcare environments". Procedia Computer Science 207 (2022): 3038–46. http://dx.doi.org/10.1016/j.procs.2022.09.532.
Pełny tekst źródłaCarreiro, André V., Artur J. Ferreira, Mário A. T. Figueiredo i Sara C. Madeira. "Towards a Classification Approach using Meta-Biclustering: Impact of Discretization in the Analysis of Expression Time Series". Journal of Integrative Bioinformatics 9, nr 3 (1.12.2012): 105–20. http://dx.doi.org/10.1515/jib-2012-207.
Pełny tekst źródłaZhang, Yinghui, Fengyuan Zhang, Yantong Cui i Ruoci Ning. "CLASSIFICATION OF BIOMEDICAL IMAGES USING CONTENT BASED IMAGE RETRIEVAL SYSTEMS". International Journal of Engineering Technologies and Management Research 5, nr 2 (8.02.2020): 181–89. http://dx.doi.org/10.29121/ijetmr.v5.i2.2018.161.
Pełny tekst źródłaLipponen, Jukka A., i Mika P. Tarvainen. "A robust algorithm for heart rate variability time series artefact correction using novel beat classification". Journal of Medical Engineering & Technology 43, nr 3 (3.04.2019): 173–81. http://dx.doi.org/10.1080/03091902.2019.1640306.
Pełny tekst źródłaJackson, Rhydon, Debra Knisley, Cecilia McIntosh i Phillip Pfeiffer. "Predicting Flavonoid UGT Regioselectivity". Advances in Bioinformatics 2011 (30.06.2011): 1–15. http://dx.doi.org/10.1155/2011/506583.
Pełny tekst źródłaJO, YONG-UN, i DO-CHANG OH. "REAL-TIME HAND GESTURE CLASSIFICATION USING CRNN WITH SCALE AVERAGE WAVELET TRANSFORM". Journal of Mechanics in Medicine and Biology 20, nr 10 (grudzień 2020): 2040028. http://dx.doi.org/10.1142/s021951942040028x.
Pełny tekst źródłaGao, Yongxiang, Zhi Zhao, Yimin Chen, Gehendra Mahara, Jialing Huang, Zhuochen Lin i Jinxin Zhang. "Automatic epileptic seizure classification in multichannel EEG time series with linear discriminant analysis". Technology and Health Care 28, nr 1 (13.01.2020): 23–33. http://dx.doi.org/10.3233/thc-181548.
Pełny tekst źródłaChambon, Stanislas, Mathieu N. Galtier, Pierrick J. Arnal, Gilles Wainrib i Alexandre Gramfort. "A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series". IEEE Transactions on Neural Systems and Rehabilitation Engineering 26, nr 4 (kwiecień 2018): 758–69. http://dx.doi.org/10.1109/tnsre.2018.2813138.
Pełny tekst źródłaArami, Arash, Antonios Poulakakis-Daktylidis, Yen F. Tai i Etienne Burdet. "Prediction of Gait Freezing in Parkinsonian Patients: A Binary Classification Augmented With Time Series Prediction". IEEE Transactions on Neural Systems and Rehabilitation Engineering 27, nr 9 (wrzesień 2019): 1909–19. http://dx.doi.org/10.1109/tnsre.2019.2933626.
Pełny tekst źródłaDursun, Gizem, Dunja Bijelić, Neşe Ayşit, Burcu Kurt Vatandaşlar, Lidija Radenović, Abdulkerim Çapar, Bilal Ersen Kerman, Pavle R. Andjus, Andrej Korenić i Ufuk Özkaya. "Combined segmentation and classification-based approach to automated analysis of biomedical signals obtained from calcium imaging". PLOS ONE 18, nr 2 (6.02.2023): e0281236. http://dx.doi.org/10.1371/journal.pone.0281236.
Pełny tekst źródłaLiu, Chenxi, Israel Cohen, Rotem Vishinkin i Hossam Haick. "Nanomaterial-Based Sensor Array Signal Processing and Tuberculosis Classification Using Machine Learning". Journal of Low Power Electronics and Applications 13, nr 2 (29.05.2023): 39. http://dx.doi.org/10.3390/jlpea13020039.
Pełny tekst źródłaArunachalam, S. P., S. Kapa, S. K. Mulpuru, P. A. Friedman i E. G. Tolkacheva. "Improved Multiscale Entropy Technique with Nearest-Neighbor Moving-Average Kernel for Nonlinear and Nonstationary Short-Time Biomedical Signal Analysis". Journal of Healthcare Engineering 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/8632436.
Pełny tekst źródłaTripathy, R. K., i U. Rajendra Acharya. "Use of features from RR-time series and EEG signals for automated classification of sleep stages in deep neural network framework". Biocybernetics and Biomedical Engineering 38, nr 4 (2018): 890–902. http://dx.doi.org/10.1016/j.bbe.2018.05.005.
Pełny tekst źródłaCuesta-Frau, David, Juan Pablo Murillo-Escobar, Diana Alexandra Orrego i Edilson Delgado-Trejos. "Embedded Dimension and Time Series Length. Practical Influence on Permutation Entropy and Its Applications". Entropy 21, nr 4 (10.04.2019): 385. http://dx.doi.org/10.3390/e21040385.
Pełny tekst źródłaWang, Jialing, Shiwei Cheng, Jieming Tian i Yuefan Gao. "A 2D CNN-LSTM hybrid algorithm using time series segments of EEG data for motor imagery classification". Biomedical Signal Processing and Control 83 (maj 2023): 104627. http://dx.doi.org/10.1016/j.bspc.2023.104627.
Pełny tekst źródłaBAI, G. MERCY, i P. VENKADESH. "TAYLOR–MONARCH BUTTERFLY OPTIMIZATION-BASED SUPPORT VECTOR MACHINE FOR ACUTE LYMPHOBLASTIC LEUKEMIA CLASSIFICATION WITH BLOOD SMEAR MICROSCOPIC IMAGES". Journal of Mechanics in Medicine and Biology 21, nr 06 (21.06.2021): 2150041. http://dx.doi.org/10.1142/s021951942150041x.
Pełny tekst źródłaChang, Yuan-Hsiang, Kuniya Abe, Hideo Yokota, Kazuhiro Sudo, Yukio Nakamura i Ming-Dar Tsai. "HUMAN INDUCED PLURIPOTENT STEM CELL REGION DETECTION IN BRIGHT-FIELD MICROSCOPY IMAGES USING CONVOLUTIONAL NEURAL NETWORKS". Biomedical Engineering: Applications, Basis and Communications 31, nr 02 (kwiecień 2019): 1950009. http://dx.doi.org/10.4015/s1016237219500091.
Pełny tekst źródłaResta, Michele, Anna Monreale i Davide Bacciu. "Occlusion-Based Explanations in Deep Recurrent Models for Biomedical Signals". Entropy 23, nr 8 (17.08.2021): 1064. http://dx.doi.org/10.3390/e23081064.
Pełny tekst źródłaDissanayake, W. M. N. D., i Maheshi B. Dissanayake. "A Novel LSTM-based Data Synthesis Approach for Performance Improvement in Detecting Epileptic Seizures". WSEAS TRANSACTIONS ON BIOLOGY AND BIOMEDICINE 20 (10.10.2023): 132–39. http://dx.doi.org/10.37394/23208.2023.20.13.
Pełny tekst źródłaZhu, Mengyun, Ximin Fan, Weijing Liu, Jianying Shen, Wei Chen, Yawei Xu i Xuejing Yu. "Artificial Intelligence-Based Echocardiographic Left Atrial Volume Measurement with Pulmonary Vein Comparison". Journal of Healthcare Engineering 2021 (6.12.2021): 1–11. http://dx.doi.org/10.1155/2021/1336762.
Pełny tekst źródłaSzigeti, Balázs, Ajinkya Deogade i Barbara Webb. "Searching for motifs in the behaviour of larval Drosophila melanogaster and Caenorhabditis elegans reveals continuity between behavioural states". Journal of The Royal Society Interface 12, nr 113 (grudzień 2015): 20150899. http://dx.doi.org/10.1098/rsif.2015.0899.
Pełny tekst źródłaChatterjee, Shre Kumar, Saptarshi Das, Koushik Maharatna, Elisa Masi, Luisa Santopolo, Stefano Mancuso i Andrea Vitaletti. "Exploring strategies for classification of external stimuli using statistical features of the plant electrical response". Journal of The Royal Society Interface 12, nr 104 (marzec 2015): 20141225. http://dx.doi.org/10.1098/rsif.2014.1225.
Pełny tekst źródłaUyulan, Caglar, Türker Tekin Ergüzel i Nevzat Tarhan. "Entropy-based feature extraction technique in conjunction with wavelet packet transform for multi-mental task classification". Biomedical Engineering / Biomedizinische Technik 64, nr 5 (25.09.2019): 529–42. http://dx.doi.org/10.1515/bmt-2018-0105.
Pełny tekst źródłaMakhir, Abdelmalek, My Hachem El Yousfi Alaoui i Larbi Belarbi. "Comprehensive Cardiac Ischemia Classification Using Hybrid CNN-Based Models". International Journal of Online and Biomedical Engineering (iJOE) 20, nr 03 (27.02.2024): 154–65. http://dx.doi.org/10.3991/ijoe.v20i03.45769.
Pełny tekst źródłaCuesta-Frau, David, Jakub Schneider, Eduard Bakštein, Pavel Vostatek, Filip Spaniel i Daniel Novák. "Classification of Actigraphy Records from Bipolar Disorder Patients Using Slope Entropy: A Feasibility Study". Entropy 22, nr 11 (1.11.2020): 1243. http://dx.doi.org/10.3390/e22111243.
Pełny tekst źródłaKhorasani, Abed, Mohammad Reza Daliri i Mohammad Pooyan. "Recognition of amyotrophic lateral sclerosis disease using factorial hidden Markov model". Biomedical Engineering / Biomedizinische Technik 61, nr 1 (1.02.2016): 119–26. http://dx.doi.org/10.1515/bmt-2014-0089.
Pełny tekst źródłaBALOGLU, ULAS BARAN, i ÖZAL YILDIRIM. "CONVOLUTIONAL LONG-SHORT TERM MEMORY NETWORKS MODEL FOR LONG DURATION EEG SIGNAL CLASSIFICATION". Journal of Mechanics in Medicine and Biology 19, nr 01 (luty 2019): 1940005. http://dx.doi.org/10.1142/s0219519419400050.
Pełny tekst źródłaBogdanov, M. R., G. R. Shakhmametova i N. N. Oskin. "Possibility of Using the Attention Mechanism in Multimodal Recognition of Cardiovascular Diseases". Programmnaya Ingeneria 15, nr 11 (18.11.2024): 578–88. http://dx.doi.org/10.17587/prin.15.578-588.
Pełny tekst źródłaAmarantidis, Lampros Chrysovalantis, i Daniel Abásolo. "Interpretation of Entropy Algorithms in the Context of Biomedical Signal Analysis and Their Application to EEG Analysis in Epilepsy". Entropy 21, nr 9 (27.08.2019): 840. http://dx.doi.org/10.3390/e21090840.
Pełny tekst źródłaZhu, Lingxia, Zhiping Xu i Ting Fang. "Analysis of Cardiac Ultrasound Images of Critically Ill Patients Using Deep Learning". Journal of Healthcare Engineering 2021 (27.10.2021): 1–8. http://dx.doi.org/10.1155/2021/6050433.
Pełny tekst źródłaJing, Junyuan, Jing Zhang, Aiping Liu, Min Gao, Ruobing Qian i Xun Chen. "ECG-Based Multiclass Arrhythmia Classification Using Beat-Level Fusion Network". Journal of Healthcare Engineering 2023 (29.11.2023): 1–10. http://dx.doi.org/10.1155/2023/1755121.
Pełny tekst źródłaHeo, Suncheol, Jae Yong Yu, Eun Ae Kang, Hyunah Shin, Kyeongmin Ryu, Chungsoo Kim, Yebin Chegal i in. "Development and Verification of Time-Series Deep Learning for Drug-Induced Liver Injury Detection in Patients Taking Angiotensin II Receptor Blockers: A Multicenter Distributed Research Network Approach". Healthcare Informatics Research 29, nr 3 (31.07.2023): 246–55. http://dx.doi.org/10.4258/hir.2023.29.3.246.
Pełny tekst źródłaNigat, Tsedenya Debebe, Tilahun Melak Sitote i Berihun Molla Gedefaw. "Fungal Skin Disease Classification Using the Convolutional Neural Network". Journal of Healthcare Engineering 2023 (30.05.2023): 1–9. http://dx.doi.org/10.1155/2023/6370416.
Pełny tekst źródłaCuesta-Frau, David, Daniel Novák, Vacláv Burda, Daniel Abasolo, Tricia Adjei, Manuel Varela, Borja Vargas i in. "Influence of Duodenal–Jejunal Implantation on Glucose Dynamics: A Pilot Study Using Different Nonlinear Methods". Complexity 2019 (14.02.2019): 1–10. http://dx.doi.org/10.1155/2019/6070518.
Pełny tekst źródłaAhammed, Kawser, i Mosabber Uddin Ahmed. "QUANTIFICATION OF MENTAL STRESS USING COMPLEXITY ANALYSIS OF EEG SIGNALS". Biomedical Engineering: Applications, Basis and Communications 32, nr 02 (kwiecień 2020): 2050011. http://dx.doi.org/10.4015/s1016237220500118.
Pełny tekst źródłaAlrowais, Fadwa, Faiz Abdullah Alotaibi, Abdulkhaleq Q. A. Hassan, Radwa Marzouk, Mrim M. Alnfiai i Ahmed Sayed. "Enhanced Pelican Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Classification on Breast Histopathology Images". Biomimetics 8, nr 7 (10.11.2023): 538. http://dx.doi.org/10.3390/biomimetics8070538.
Pełny tekst źródłaMaheshwari, Saumil, Aman Agarwal, Anupam Shukla i Ritu Tiwari. "A comprehensive evaluation for the prediction of mortality in intensive care units with LSTM networks: patients with cardiovascular disease". Biomedical Engineering / Biomedizinische Technik 65, nr 4 (27.08.2020): 435–46. http://dx.doi.org/10.1515/bmt-2018-0206.
Pełny tekst źródła