Gotowa bibliografia na temat „Classical Brownian Motion”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „Classical Brownian Motion”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "Classical Brownian Motion"
Tsekov, Roumen, i Georgi N. Vayssilov. "Quantum Brownian motion and classical diffusion". Chemical Physics Letters 195, nr 4 (lipiec 1992): 423–26. http://dx.doi.org/10.1016/0009-2614(92)85628-n.
Pełny tekst źródłaOrd, G. N. "Schrödinger's Equation and Classical Brownian Motion". Fortschritte der Physik 46, nr 6-8 (listopad 1998): 889–96. http://dx.doi.org/10.1002/(sici)1521-3978(199811)46:6/8<889::aid-prop889>3.0.co;2-z.
Pełny tekst źródłaTsekov, Roumen. "Brownian Motion and Quantum Mechanics". Fluctuation and Noise Letters 19, nr 02 (19.11.2019): 2050017. http://dx.doi.org/10.1142/s0219477520500170.
Pełny tekst źródłaSantos, Willien O., Guilherme M. A. Almeida i Andre M. C. Souza. "Noncommutative Brownian motion". International Journal of Modern Physics A 32, nr 23n24 (24.08.2017): 1750146. http://dx.doi.org/10.1142/s0217751x17501469.
Pełny tekst źródłaRajput, B. S. "Quantum equations from Brownian motion". Canadian Journal of Physics 89, nr 2 (luty 2011): 185–91. http://dx.doi.org/10.1139/p10-111.
Pełny tekst źródłaAnders, J., C. R. J. Sait i S. A. R. Horsley. "Quantum Brownian motion for magnets". New Journal of Physics 24, nr 3 (1.03.2022): 033020. http://dx.doi.org/10.1088/1367-2630/ac4ef2.
Pełny tekst źródłaAmbegaokar, Vinay. "Quantum Brownian Motion and its Classical Limit". Berichte der Bunsengesellschaft für physikalische Chemie 95, nr 3 (marzec 1991): 400–404. http://dx.doi.org/10.1002/bbpc.19910950331.
Pełny tekst źródłaKhalili Golmankhaneh, Ali, Saleh Ashrafi, Dumitru Baleanu i Arran Fernandez. "Brownian Motion on Cantor Sets". International Journal of Nonlinear Sciences and Numerical Simulation 21, nr 3-4 (26.05.2020): 275–81. http://dx.doi.org/10.1515/ijnsns-2018-0384.
Pełny tekst źródłaPARK, MOONGYU, i JOHN H. CUSHMAN. "THE COMPLEXITY OF BROWNIAN PROCESSES RUN WITH NONLINEAR CLOCKS". Modern Physics Letters B 25, nr 01 (10.01.2011): 1–10. http://dx.doi.org/10.1142/s0217984911025481.
Pełny tekst źródłaUlrich, Michaël. "Construction of a free Lévy process as high-dimensional limit of a Brownian motion on the unitary group". Infinite Dimensional Analysis, Quantum Probability and Related Topics 18, nr 03 (wrzesień 2015): 1550018. http://dx.doi.org/10.1142/s0219025715500186.
Pełny tekst źródłaRozprawy doktorskie na temat "Classical Brownian Motion"
Romero-Rochin, Victor Manuel. "Brownian motion and weak coupling in classical and quantum systems". Thesis, Massachusetts Institute of Technology, 1988. http://hdl.handle.net/1721.1/14383.
Pełny tekst źródłaLange, Rutger-Jan. "Brownian motion and multidimensional decision making". Thesis, University of Cambridge, 2012. https://www.repository.cam.ac.uk/handle/1810/243402.
Pełny tekst źródłaSantos, Joao Rafael Lucio dos. "Tópicos em defeitos deformados e o movimento Browniano". Universidade Federal da Paraíba, 2013. http://tede.biblioteca.ufpb.br:8080/handle/tede/5748.
Pełny tekst źródłaCoordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES
The non-linear science is a central topic covering several investigation areas, such as biology, chemistry, mathematics and physics. In the first part of this thesis, we studied the non-linearity in the scope of classical field theory. The discussions are based on static solutions in (1, 1) space-time dimensions, and they are focused on kinks and lumps defects. In the related procedures, we show several techniques which allowed us to determine new models with their respective analytical solutions. The main mathematical tool to obtain these results is the so called deformation method, which was also an essential piece in the construction of a new extension method. This method presents the determination of new two scalar fields models from the coupling between two one scalar field systems. The method was analyzed carefully, as well as the linear stability, the zero modes, the total energy and the superpotentials, related with the new families of potentials. Furthermore, in the second part we presented the basics concepts about the Brownian Motion, where we analised the features of the solution of the Langevin Equation, and we also introduced a path integral approach to this problem in a quantum field theory way.
A ciência não-linear é tema central de diversas linhas de investigação, cobrindo áreas como a biologia, a física, a matemática e a química. Nossa primeira vertente de trabalho nesta tese, consiste no estudo de não-linearidades via abordagem de teoria clássica de campos. As discussões estão baseadas em soluções estáticas em (1, 1) dimensões, com destaque para o chamados defeitos tipo kink e lump. Nos procedimentos relatados, discorremos a respeito de diversas técnicas para a determinação de novos modelos com suas respectivas soluções analíticas. Um ferramental fundamental para a obtenção desses resultados é o chamado método de deformação, o qual também foi parte essencial para a criação de um método de extensão de modelos, onde visamos a construção de modelos de dois campos reais a partir do acoplamento entre dois modelos de um campo. Tal método também foi exposto em detalhes, bem como as análises sobre estabilidade linear, cálculo de modos zeros, determinação da energia total e dos superpotenciais, relativos às novas famílias de potenciais. Já a segunda linha de pesquisa, refere-se aos conceitos básicos do movimento browniano, onde analisamos as propriedades da solução da equação de Langevin, e na introdução de uma abordagem via integrais de trajetória para descrevê-lo nos moldes de teoria de quântica de campos.
Dahlqvist, Antoine. "Dualité de Schur-Weyl, mouvement brownien sur les groupes de Lie compacts classiques et étude asymptotique de la mesure de Yang-Mills". Phd thesis, Université Pierre et Marie Curie - Paris VI, 2014. http://tel.archives-ouvertes.fr/tel-00961035.
Pełny tekst źródłaMacháček, Adam. "Oceňování bariérových opcí". Master's thesis, 2013. http://www.nusl.cz/ntk/nusl-321410.
Pełny tekst źródłaKsiążki na temat "Classical Brownian Motion"
Random walk and the heat equation. Providence, R.I: American Mathematical Society, 2010.
Znajdź pełny tekst źródłaPort, Sidney. Brownian Motion and Classical Potential Theory. Elsevier Science & Technology Books, 2012.
Znajdź pełny tekst źródłaMilonni, Peter W. An Introduction to Quantum Optics and Quantum Fluctuations. Oxford University Press, 2019. http://dx.doi.org/10.1093/oso/9780199215614.001.0001.
Pełny tekst źródłaHarmonic Analysis. American Mathematical Society, 2018.
Znajdź pełny tekst źródłaCzęści książek na temat "Classical Brownian Motion"
Lampo, Aniello, Miguel Ángel García March i Maciej Lewenstein. "Classical Brownian Motion". W SpringerBriefs in Physics, 7–18. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-16804-9_2.
Pełny tekst źródłaDoob, Joseph L. "Brownian Motion". W Classical Potential Theory and Its Probabilistic Counterpart, 570–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_26.
Pełny tekst źródłaDoob, Joseph L. "Conditional Brownian Motion". W Classical Potential Theory and Its Probabilistic Counterpart, 668–702. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_29.
Pełny tekst źródłaD'Aristotile, Anthony, Persi Diaconis i Charles M. Newman. "Brownian motion and the classical groups". W Institute of Mathematical Statistics Lecture Notes - Monograph Series, 97–116. Beachwood, OH: Institute of Mathematical Statistics, 2003. http://dx.doi.org/10.1214/lnms/1215091660.
Pełny tekst źródłaGlover, Joseph, i Murali Rao. "Inversion and Reflecting Brownian Motion". W Classical and Modern Potential Theory and Applications, 199–215. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-011-1138-6_18.
Pełny tekst źródłaDoob, Joseph L. "Brownian Motion and Martingale Theory". W Classical Potential Theory and Its Probabilistic Counterpart, 627–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_28.
Pełny tekst źródłaDoob, Joseph L. "Brownian Motion and the PWB Method". W Classical Potential Theory and Its Probabilistic Counterpart, 719–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_31.
Pełny tekst źródłaDoob, Joseph L. "Brownian Motion on the Martin Space". W Classical Potential Theory and Its Probabilistic Counterpart, 727–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56573-1_32.
Pełny tekst źródłaMeilijson, Isaac. "Stochastic Orders and Stopping Times in Brownian Motion". W From Classical to Modern Probability, 207–20. Basel: Birkhäuser Basel, 2003. http://dx.doi.org/10.1007/978-3-0348-8053-4_6.
Pełny tekst źródłaCoffey, William T., Yuri P. Kalmykov, Serguey V. Titov i William J. Dowling. "Longest Relaxation Time of Relaxation Processes for Classical and Quantum Brownian Motion in a Potential: Escape Rate Theory Approach". W Advances in Chemical Physics, 111–309. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118571767.ch3.
Pełny tekst źródłaStreszczenia konferencji na temat "Classical Brownian Motion"
Nualart, David. "A white noise approach to fractional Brownian motion". W Stochastic Analysis: Classical and Quantum - Perspectives of White Noise Theory. WORLD SCIENTIFIC, 2005. http://dx.doi.org/10.1142/9789812701541_0010.
Pełny tekst źródłaMansour, Nastaran, Mehdi Mohammad Kazemi, Rouhollah Karimzadeh i Javid Zamir Anvari. "Statistical Speckle Study of Copper Nanofluids". W ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18406.
Pełny tekst źródłaFishman, Louis. "Symbol Analysis and the Construction of One-Way Forward and Inverse Wave Propagation Theories". W Numerical Simulation and Analysis in Guided-Wave Optics and Opto-Electronics. Washington, D.C.: Optica Publishing Group, 1989. http://dx.doi.org/10.1364/gwoe.1989.se3.
Pełny tekst źródłaHarish, S., Kei Ishikawa, Erik Einarsson, Taiki Inoue, Shohei Chiashi, Junichiro Shiomi i Shigeo Maruyama. "Enhanced Thermal Conductivity of Water With Surfactant Encapsulated and Individualized Single-Walled Carbon Nanotube Dispersions". W ASME 2012 Third International Conference on Micro/Nanoscale Heat and Mass Transfer. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/mnhmt2012-75021.
Pełny tekst źródłaOrtigueira, Manuel Duarte, i Arnaldo Guimara˜es Batista. "A New Look at the Fractional Brownian Motion Definition". W ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35218.
Pełny tekst źródłaRaporty organizacyjne na temat "Classical Brownian Motion"
Соловйов, В. М., В. В. Соловйова i Д. М. Чабаненко. Динаміка параметрів α-стійкого процесу Леві для розподілів прибутковостей фінансових часових рядів. ФО-П Ткачук О. В., 2014. http://dx.doi.org/10.31812/0564/1336.
Pełny tekst źródła