Gotowa bibliografia na temat „CIRCULAR TUNNELS”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Zobacz listy aktualnych artykułów, książek, rozpraw, streszczeń i innych źródeł naukowych na temat „CIRCULAR TUNNELS”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Artykuły w czasopismach na temat "CIRCULAR TUNNELS"
Pham, Van Vi, Ngoc Anh Do i Daniel Dias. "Sub-Rectangular Tunnel Behavior under Seismic Loading". Applied Sciences 11, nr 21 (23.10.2021): 9909. http://dx.doi.org/10.3390/app11219909.
Pełny tekst źródłaYan, Li, i Jun Sheng Yang. "Displacements around Two Closely Adjacent Circular Openings". Applied Mechanics and Materials 170-173 (maj 2012): 1397–401. http://dx.doi.org/10.4028/www.scientific.net/amm.170-173.1397.
Pełny tekst źródłaPham, Vi Van, Anh Ngoc Do, Hung Trong Vo, Daniel Dias ., Thanh Chi Nguyen i Do Xuan Hoi. "Effect of soil Young’s modulus on Sub-rectangular tunnels behavior under quasi-static loadings". Journal of Mining and Earth Sciences 63, nr 3a (31.07.2022): 10–21. http://dx.doi.org/10.46326/jmes.2022.63(3a).02.
Pełny tekst źródłaDuan, Yawei, Mi Zhao, Jingqi Huang, Huifang Li i Xiuli Du. "Analytical Solution for Circular Tunnel under Obliquely Incident P Waves considering Different Contact Conditions". Shock and Vibration 2021 (22.12.2021): 1–23. http://dx.doi.org/10.1155/2021/1946184.
Pełny tekst źródłaXu, Hua, Tianbin Li, Jingsong Xu i Yingjun Wang. "Dynamic Response of Underground Circular Lining Tunnels Subjected to Incident P Waves". Mathematical Problems in Engineering 2014 (2014): 1–11. http://dx.doi.org/10.1155/2014/297424.
Pełny tekst źródłaJearsiripongkul, Thira, Suraparb Keawsawasvong, Chanachai Thongchom i Chayut Ngamkhanong. "Prediction of the Stability of Various Tunnel Shapes Based on Hoek–Brown Failure Criterion Using Artificial Neural Network (ANN)". Sustainability 14, nr 8 (11.04.2022): 4533. http://dx.doi.org/10.3390/su14084533.
Pełny tekst źródłaCilingir, Ulas, i S. P. Gopal Madabhushi. "Effect of depth on seismic response of circular tunnels". Canadian Geotechnical Journal 48, nr 1 (styczeń 2011): 117–27. http://dx.doi.org/10.1139/t10-047.
Pełny tekst źródłaDang, Van Kien, Ngoc Anh Do, Tai Tien Nguyen, Anh Duy Huynh Nguyen i Van Vi Pham. "An overview of research on metro tunnel lining in the sub-rectangular shape". Journal of Mining and Earth Sciences 62, nr 4 (31.08.2021): 68–78. http://dx.doi.org/10.46326/jmes.2021.62(4).08.
Pełny tekst źródłaLeong, Jik Chang, C. L. Chang, Y. C. Chen i L. W. Chen. "Smoke Propagation in an Inclined Semi-Circular Long Tunnel". Advanced Materials Research 446-449 (styczeń 2012): 2143–48. http://dx.doi.org/10.4028/www.scientific.net/amr.446-449.2143.
Pełny tekst źródłaGonzalez, F. J., P. K. Kaiser i M. S. Diederichs. "Energy Release Resulting from Sudden Excavation Shape Changes during Two-sided Strainbursts". IOP Conference Series: Earth and Environmental Science 1124, nr 1 (1.01.2023): 012082. http://dx.doi.org/10.1088/1755-1315/1124/1/012082.
Pełny tekst źródłaRozprawy doktorskie na temat "CIRCULAR TUNNELS"
Boncu, Altan. "Structural Fire Safety Of Standart Circular Railroad Tunnels Under Different Soil Conditions". Master's thesis, METU, 2004. http://etd.lib.metu.edu.tr/upload/12609537/index.pdf.
Pełny tekst źródłaBrito, Jaime Francisco. "Computer aided design of circular tunnels using analysis and knowledge-based rules". Thesis, Massachusetts Institute of Technology, 1994. http://hdl.handle.net/1721.1/12103.
Pełny tekst źródłaNoori, Behshad. "Application of dynamic vibration absorbers on double-deck circular railway tunnels to mitigate railway-induced ground-borne vibration". Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/667305.
Pełny tekst źródłaEn esta tesis se estudia la eficiencia de los absorbedores de vibraciones dinámicos (DVAs) como medidas de mitigación de las vibraciones inducidas por infraestructuras ferroviarias aplicados a túneles ferroviarios de dos niveles. Los principales desarrollos de la tesis son el acoplamiento de un conjunto de distribuciones longitudinales de DVAs a la losa intermedia de un modelo dinámico de túnel de dos niveles, el cálculo de la respuesta de este sistema acoplado debido al paso del tren y la obtención de los parámetros óptimos de los DVAs para minimizar esta respuesta. Para abordar la primer punto, se ha desarrollado una metodología con el fin de acoplar un conjunto de distribuciones longitudinales de DVAs a cualquier subsistema ferroviario en el contexto de modelos teóricos de la dinámica de infraestructura ferroviarias. Los parámetros óptimos de los DVAs han sido obtenidos mediante un proceso de optimización basado en un algoritmo genético. La eficiencia de los DVAs se evalúa mediante dos quantificadores de la respuesta dinámica del sistema, los cuales se utilizan como funciones objetivo a minimizar en el proceso de optimización: el flujo de energía total radiado hacia arriba desde el túnel y el valor máximo de vibración transitoria (MTVV) en el forjada de un edificio cercano al túnel. El modelo utilizado para calcular el primero es un modelo semi-analítico del sistema vehículo-vía-túnel-terreno que considera un modelo de terreno de espacio completo, y el que se utiliza para calcular el segundo es un modelo híbrido experimental-numérico del sistema vehículo-vía-túnel-terreno-edificio. En el modelo híbrido, se utiliza un modelo numérico del sistema vía-túnel basado en la formulación acoplada de elementos finitos-elementos de contorno acoplados, formulada en el dominio del número de onda y la frecuencia, junto con un modelo dinámico multicuerpo del vehículo con el objetivo de calcular la respuesta en la pared del túnel. Luego, la respuesta en el edificio se calcula utilizando funciones de transferencia obtenidas experimentalmente entre la pared del túnel y el edificio. Para calcular el MTVV, se utiliza la respuesta triaxial en el edificio. Una opción alternativa para evaluar el MTVV en un edificio es utilizar un modelo totalmente teórico del sistema vehículo-vía-túnel-terreno-edificio. En el contexto de esta estrategia de modelado, también se presenta un método computacionalmente eficiente para calcular las funciones de Green de un terreno en capas en el dominio 2.5D. Los resultados muestran que los DVAs pueden ser una medida de mitigación efectiva para las vibraciones inducidas por infraestructuras ferroviarias en el marco de un túnel ferroviario de dos niveles, ya que en las simulaciones presentadas en esta tesis se alcanzan reducciones de hasta 6.6 dB en el flujo de energía total radiado y hasta 3.3 dB en la vibración dentro de un edificio cercano.
Christopoulos, George P. "Oscillating-flow wind tunnel studies for a circulation control circular cylinder". Thesis, Monterey, California. Naval Postgraduate School, 1991. http://hdl.handle.net/10945/28435.
Pełny tekst źródłaMiranda, Sergio. "Active Control of Separated Flow over a Circular-Arc Airfoil". Thesis, Virginia Tech, 2000. http://hdl.handle.net/10919/34411.
Pełny tekst źródłaMaster of Science
Clot, Razquin Arnau. "A dynamical model of a double-deck circular tunnel embedded in a full-space". Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/145255.
Pełny tekst źródłaZagadou, Franck. "Numerical analysis of acoustic scattering by a thin circular disk, with application to train-tunnel interaction noise". Thesis, Boston University, 2002. https://hdl.handle.net/2144/42324.
Pełny tekst źródłaBesse, Michaël. "Etude d'un demi-métal : Sr2FeMoO6, caractérisation du matériau massif et croissance de couches minces". Paris 11, 2002. http://www.theses.fr/2002PA112190.
Pełny tekst źródłaFor magnetoresistance of magnetic tunnel junctions (TMR), the bigger is the spin polarization of the electrodes, the more important is the magnetoresistance. Use of ferromagnetic half metals should give infinite TMR. Double perovskite Sr2FeMO6 (SFMO) is a ferromagnetic half metal having a Curie temperature of 415K far higher than room temperature. The study we made on this material is in, two parts. First, we measured by magnetic dichroism the iron and molybdenum spin moments and we made obvious their antiparallel configuration and the mixed valence of iron in this compound. These results agree the existing structure band calculations. In the same time, we elaborated thin films of this material by pulsed laser deposition. By an advanced structural and magnetic characterization, we brought to the fore the existence of iron rich parasitic phases which were developing in the early stage of the high temperature growth. In order to avoid their apparition, we developed a three steps method. Films obtained in this way are presenting a low roughness and a surface magnetization close to the bulk material. Tunnel junctions SFMO/SrTiO3/Co have also been elaborated. These junctions present non-linear current-voltage curves which are characteristics of tunnel effect. First results on junctions are promising and studies on it are going on
Fisher, David T. "Wind tunnel performance comparative test results of a circular cylinder and 50% ellipse tailboom for circulation control antitorque applications". Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1994. http://handle.dtic.mil/100.2/ADA283335.
Pełny tekst źródłaMesrobian, Chris Eden. "Concept Study of a High-Speed, Vertical Take-Off and Landing Aircraft". Thesis, Virginia Tech, 2009. http://hdl.handle.net/10919/35574.
Pełny tekst źródłaTo assess the DiscRotor during hover, small scale tests were conducted on a 3ft diameter rotor without the presence of a fuselage. A â hover rigâ was constructed capable of rotating the model rotor at speeds up to 3,500 RPM to reach tip speeds of 500fps. Thrust and torque generated by the rotating model were measured via a two-component load cell, and time averaged values were obtained for various speeds and pitch angles. It has been shown that the DiscRotor will perform well in hover. Ground Effects in hover were examined by simulating the ground with a movable, solid wall. The thrust was found to increase by 50% compared to the ground-independent case. Pressure distributions were measured on the ground and disc surfaces. Velocity measurements examined the flow field downstream of the rotor by traversing a seven hole velocity probe. A wake behind the rotor was shown to contract due to a low pressure region that develops downstream of the disc.
Wind tunnel experimentation was also performed to examine the fixed wing flight of the DiscRotor. These experiments were performed in the VA Tech 6â X6â Stability Tunnel. A model of the fuselage and a circular wing was fabricated based upon an initial sizing study completed by our partners at Boeing. Forces were directly measured via a six degree of freedom load cell, or balance, for free stream velocities up to 200fps. Reynolds numbers of 2 and 0.5 million have been investigated for multiple angles of attack. Low lift-to-drag ratios were found placing high power requirements for the DiscRotor during fixed-wing flight. By traversing a seven-hole velocity probe, velocities in a 2-D grid perpendicular to the flow were measured on the model. The strengths of shed vortices from the model were calculated. A method to improve fixed-wing performance was considered where two blades were extended from the disc. An increase of 0.17 in the CL was measured due to the interaction between the disc and blades.
This research utilized a wide range of experiments, with the aim of generating basic aerodynamic characteristics of the DiscRotor. A substantial amount of quantitative data was collected that could not be included in this document. Results aided in the initial designs of this aircraft for the purpose of evaluating the merit of the DiscRotor concept.
Master of Science
Książki na temat "CIRCULAR TUNNELS"
Christopoulos, George P. Oscillating-flow wind tunnel studies for a circulation control circular cylinder. Monterey, Calif: Naval Postgraduate School, 1991.
Znajdź pełny tekst źródłaM, Ware George, MacConochie Ian O i Langley Research Center, red. Subsonic aerodynamic characteristics of a circular body earth-to-orbit vehicle. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Znajdź pełny tekst źródłaFox, T. A. On the use of end plates with circular cylinders in wind tunnel studies. St.Lucia: University of Queensland, Dept. of Civil Engineering, 1990.
Znajdź pełny tekst źródłaBurley, James R. Static investigation of circular-to-rectangular transition ducts for high-aspect-ratio nonaxisymmetric nozzles. [Washington, D.C.]: National Aeronautics and Space Administration, Scientific and Technical Information Branch, 1986.
Znajdź pełny tekst źródłaCzęści książek na temat "CIRCULAR TUNNELS"
Madalina, Ciotlaus, Marusceac Vladimir i Alexandra D. Danciu. "Impact of Soil Type Transition on Circular Tunnels Behavior". W The 16th International Conference Interdisciplinarity in Engineering, 57–67. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-22375-4_5.
Pełny tekst źródłaSinha, Shipra, Swapnil Mishra, K. S. Rao i T. Chakraborty. "Analysis of Twin Circular Tunnels Subjected to Impact Loads". W Lecture Notes in Civil Engineering, 683–94. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-6466-0_63.
Pełny tekst źródłade Silva, F., S. Fabozzi, N. Nikitas, E. Bilotta i R. Fuentes. "Site Specific Seismic Performance of Circular Tunnels in Dry Sand". W Lecture Notes in Civil Engineering, 537–44. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-21359-6_57.
Pełny tekst źródłaWang, Hua Ning, Guang Shang Zeng i Ming Jing Jiang. "Analytical Prediction of Stresses Around Non-circular Tunnels Excavated at Shallow Depth". W Proceedings of GeoShanghai 2018 International Conference: Rock Mechanics and Rock Engineering, 39–47. Singapore: Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-13-0113-1_5.
Pełny tekst źródłaHuo, Hongbin, Lizhen Zhou, Yaqing Wang i Tao Zhang. "A Method for Predicting Seismic Stress and Deformation of Circular Tunnels Based on BP Artificial Neural Network". W Challenges and Innovations in Geomechanics, 369–76. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-64518-2_44.
Pełny tekst źródłaThouvenin, G., i A. Giraud. "Thermoporoelastic Analysis of a Deep Circular Tunnel". W Application of Numerical Methods to Geotechnical Problems, 583–92. Vienna: Springer Vienna, 1998. http://dx.doi.org/10.1007/978-3-7091-2512-0_56.
Pełny tekst źródłaKretzschmar, Linn. "Leveraging the Economic Potential of FCC’s Technologies and Processes". W The Economics of Big Science, 85–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-52391-6_12.
Pełny tekst źródłaAl-Mirza, Hayder A., i Mahdi O. Karkush. "Numerical Modeling of Circular Tunnel Alignment Under Seismic Loading". W Geotechnical Engineering and Sustainable Construction, 15–27. Singapore: Springer Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-6277-5_2.
Pełny tekst źródłaZafeiropoulos, A., i P. Nomikos. "Numerical simulation of circular tunnel intersections in anisotropic rock mass". W Expanding Underground - Knowledge and Passion to Make a Positive Impact on the World, 2363–70. London: CRC Press, 2023. http://dx.doi.org/10.1201/9781003348030-284.
Pełny tekst źródłaYu, Jian-qiang, Qi Li, Yong-lu Wang i Shuai Tao. "Numerical Simulation of Rockburst Characteristics of Tunnel Surrounding Rock Under Dilatancy Effect". W Advances in Frontier Research on Engineering Structures, 163–73. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-8657-4_15.
Pełny tekst źródłaStreszczenia konferencji na temat "CIRCULAR TUNNELS"
Dudley, D. G. "Propagation in circular tunnels: ring source excitation". W IEEE Antennas and Propagation Society Symposium, 2004. IEEE, 2004. http://dx.doi.org/10.1109/aps.2004.1332006.
Pełny tekst źródłaYang, Xuexia, i Yimin Lu. "Propagation Characteristics of Millimeter Wave in Circular Tunnels". W 2006 7th International Symposium on Antennas, Propagation & EM Theory. IEEE, 2006. http://dx.doi.org/10.1109/isape.2006.353508.
Pełny tekst źródłaMollon, Guilhem, Daniel Dias i Abdul-Hamid Soubra. "Probabilistic Analysis of the Face Stability of Circular Tunnels". W International Foundation Congress and Equipment Expo 2009. Reston, VA: American Society of Civil Engineers, 2009. http://dx.doi.org/10.1061/41022(336)45.
Pełny tekst źródłaDeling Wang i Richard J. Bathurst. "Research on shock mitigation on circular tunnels using expanded polystyrene". W 2011 International Conference on Electric Technology and Civil Engineering (ICETCE). IEEE, 2011. http://dx.doi.org/10.1109/icetce.2011.5775176.
Pełny tekst źródłaBilotta, E., R. M. S. Maiorano, A. Viglione i S. Aversa. "THREE-DIMENSIONAL NUMERICAL MODELLING OF CIRCULAR TUNNELS UNDER SEISMIC ACTIONS". W 5th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering Methods in Structural Dynamics and Earthquake Engineering. Athens: Institute of Structural Analysis and Antiseismic Research School of Civil Engineering National Technical University of Athens (NTUA) Greece, 2015. http://dx.doi.org/10.7712/120115.3581.1654.
Pełny tekst źródłaMahmoud, S. F. "Guided mode propagation in tunnels with non-circular cross section". W 2008 IEEE Antennas and Propagation Society International Symposium and USNC/URSI National Radio Science Meeting. IEEE, 2008. http://dx.doi.org/10.1109/aps.2008.4619721.
Pełny tekst źródłaDias, Daniel, Jean-Pierre Janin, Abdul-Hamid Soubra i Richard Kastner. "Three-Dimensional Face Stability Analysis of Circular Tunnels by Numerical Simulations". W GeoCongress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40972(311)111.
Pełny tekst źródłaSoubra, Abdul-Hamid, Daniel Dias, Fabrice Emeriault i Richard Kastner. "Three-Dimensional Face Stability Analysis of Circular Tunnels by a Kinematical Approach". W GeoCongress 2008. Reston, VA: American Society of Civil Engineers, 2008. http://dx.doi.org/10.1061/40972(311)112.
Pełny tekst źródłaZHANG, JINFENG, i MING ZHAO. "A Method to Monitor the Circular Deformation of Metro Shield Tunnels in Soft Soils". W Structural Health Monitoring 2017. Lancaster, PA: DEStech Publications, Inc., 2017. http://dx.doi.org/10.12783/shm2017/13991.
Pełny tekst źródłaWei, Hui, Guoxin Zheng i Minghua Jia. "The Measurements and Simulations of Millimeter Wave Propagation at 38ghz in Circular Subway Tunnels". W 2008 China-Japan Joint Microwave Conference (CJMW 2008). IEEE, 2008. http://dx.doi.org/10.1109/cjmw.2008.4772373.
Pełny tekst źródłaRaporty organizacyjne na temat "CIRCULAR TUNNELS"
Kandalaft-Ladkany, N. Design management and stress analysis of a circular rock tunnel for storage of spent nuclear fuel. Office of Scientific and Technical Information (OSTI), czerwiec 1992. http://dx.doi.org/10.2172/10146824.
Pełny tekst źródłaKandalaft-Ladkany, N. Design management and stress analysis of a circular rock tunnel for storage of spent nuclear fuel. Office of Scientific and Technical Information (OSTI), styczeń 1992. http://dx.doi.org/10.2172/5353754.
Pełny tekst źródłaLAZEMI, H. A., M. FATEHI MARJI i M. ZAREI MAHMOUDABADI. Effect of Axial in Situ Stress on the Elasto-Plastic Analysis of Circular Tunnel in a Generalized Hoek-Brown Rock. Cogeo@oeaw-giscience, wrzesień 2011. http://dx.doi.org/10.5242/iamg.2011.0263.
Pełny tekst źródła