Artykuły w czasopismach na temat „CIRCADIAN CLOCK PROTEIN”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „CIRCADIAN CLOCK PROTEIN”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Xiao, Yangbo, Ye Yuan, Mariana Jimenez, Neeraj Soni i Swathi Yadlapalli. "Clock proteins regulate spatiotemporal organization of clock genes to control circadian rhythms". Proceedings of the National Academy of Sciences 118, nr 28 (7.07.2021): e2019756118. http://dx.doi.org/10.1073/pnas.2019756118.
Pełny tekst źródłaLu, Renbin, Yufan Dong i Jia-Da Li. "Necdin regulates BMAL1 stability and circadian clock through SGT1-HSP90 chaperone machinery". Nucleic Acids Research 48, nr 14 (15.07.2020): 7944–57. http://dx.doi.org/10.1093/nar/gkaa601.
Pełny tekst źródłaFu, Minnie, i Xiaoyong Yang. "The sweet tooth of the circadian clock". Biochemical Society Transactions 45, nr 4 (3.07.2017): 871–84. http://dx.doi.org/10.1042/bst20160183.
Pełny tekst źródłaMosier, Alexander E., i Jennifer M. Hurley. "Circadian Interactomics: How Research Into Protein-Protein Interactions Beyond the Core Clock Has Influenced the Model of Circadian Timekeeping". Journal of Biological Rhythms 36, nr 4 (31.05.2021): 315–28. http://dx.doi.org/10.1177/07487304211014622.
Pełny tekst źródłaFuchikawa, T., K. Beer, C. Linke-Winnebeck, R. Ben-David, A. Kotowoy, V. W. K. Tsang, G. R. Warman, E. C. Winnebeck, C. Helfrich-Förster i G. Bloch. "Neuronal circadian clock protein oscillations are similar in behaviourally rhythmic forager honeybees and in arrhythmic nurses". Open Biology 7, nr 6 (czerwiec 2017): 170047. http://dx.doi.org/10.1098/rsob.170047.
Pełny tekst źródłaZhang, Yang, Chunyan Duan, Jing Yang, Suping Chen, Qing Liu, Liang Zhou, Zhengyun Huang, Ying Xu i Guoqiang Xu. "Deubiquitinating enzyme USP9X regulates cellular clock function by modulating the ubiquitination and degradation of a core circadian protein BMAL1". Biochemical Journal 475, nr 8 (30.04.2018): 1507–22. http://dx.doi.org/10.1042/bcj20180005.
Pełny tekst źródłaDurgan, David J., Margaret A. Hotze, Tara M. Tomlin, Oluwaseun Egbejimi, Christophe Graveleau, E. Dale Abel, Chad A. Shaw, Molly S. Bray, Paul E. Hardin i Martin E. Young. "The intrinsic circadian clock within the cardiomyocyte". American Journal of Physiology-Heart and Circulatory Physiology 289, nr 4 (październik 2005): H1530—H1541. http://dx.doi.org/10.1152/ajpheart.00406.2005.
Pełny tekst źródłaGraf, Alexander, Diana Coman, R. Glen Uhrig, Sean Walsh, Anna Flis, Mark Stitt i Wilhelm Gruissem. "Parallel analysis of Arabidopsis circadian clock mutants reveals different scales of transcriptome and proteome regulation". Open Biology 7, nr 3 (marzec 2017): 160333. http://dx.doi.org/10.1098/rsob.160333.
Pełny tekst źródłaClark, Amelia M., i Brian J. Altman. "Circadian control of macrophages in the tumor microenvironment." Journal of Immunology 208, nr 1_Supplement (1.05.2022): 165.06. http://dx.doi.org/10.4049/jimmunol.208.supp.165.06.
Pełny tekst źródłaNarumi, Ryohei, Yoshihiro Shimizu, Maki Ukai-Tadenuma, Koji L. Ode, Genki N. Kanda, Yuta Shinohara, Aya Sato, Katsuhiko Matsumoto i Hiroki R. Ueda. "Mass spectrometry-based absolute quantification reveals rhythmic variation of mouse circadian clock proteins". Proceedings of the National Academy of Sciences 113, nr 24 (31.05.2016): E3461—E3467. http://dx.doi.org/10.1073/pnas.1603799113.
Pełny tekst źródłaAbdalla, Osama Hasan Mustafa Hasan, Brittany Mascarenhas i Hai-Ying Mary Cheng. "Death of a Protein: The Role of E3 Ubiquitin Ligases in Circadian Rhythms of Mice and Flies". International Journal of Molecular Sciences 23, nr 18 (12.09.2022): 10569. http://dx.doi.org/10.3390/ijms231810569.
Pełny tekst źródłaLeloup, Jean-Christophe. "Circadian clocks and phosphorylation: Insights from computational modeling". Open Life Sciences 4, nr 3 (1.09.2009): 290–303. http://dx.doi.org/10.2478/s11535-009-0025-1.
Pełny tekst źródłaTian, Wenwen, Ruyi Wang, Cunpei Bo, Yingjun Yu, Yuanyuan Zhang, Gyeong-Im Shin, Woe-Yeon Kim i Lei Wang. "SDC mediates DNA methylation-controlled clock pace by interacting with ZTL in Arabidopsis". Nucleic Acids Research 49, nr 7 (1.03.2021): 3764–80. http://dx.doi.org/10.1093/nar/gkab128.
Pełny tekst źródłaJaeger, Cassie, Ali Q. Khazaal, Canxin Xu, Mingwei Sun, Stacey L. Krager i Shelley A. Tischkau. "Aryl Hydrocarbon Receptor Deficiency Alters Circadian and Metabolic Rhythmicity". Journal of Biological Rhythms 32, nr 2 (27.03.2017): 109–20. http://dx.doi.org/10.1177/0748730417696786.
Pełny tekst źródłaChi-Castañeda, Donají, i Arturo Ortega. "The Role of Mammalian Glial Cells in Circadian Rhythm Regulation". Neural Plasticity 2017 (2017): 1–9. http://dx.doi.org/10.1155/2017/8140737.
Pełny tekst źródłaKidd, Philip B., Michael W. Young i Eric D. Siggia. "Temperature compensation and temperature sensation in the circadian clock". Proceedings of the National Academy of Sciences 112, nr 46 (2.11.2015): E6284—E6292. http://dx.doi.org/10.1073/pnas.1511215112.
Pełny tekst źródłaGallardo, Amador, Aldara Molina, Helena G. Asenjo, Jordi Martorell-Marugán, Rosa Montes, Verónica Ramos-Mejia, Antonio Sanchez-Pozo, Pedro Carmona-Sáez, Lourdes Lopez-Onieva i David Landeira. "The molecular clock protein Bmal1 regulates cell differentiation in mouse embryonic stem cells". Life Science Alliance 3, nr 5 (13.04.2020): e201900535. http://dx.doi.org/10.26508/lsa.201900535.
Pełny tekst źródłaPattanayek, Rekha, Jimin Wang, Tetsuya Mori, Yao Xu, Carl Hirschie Johnson i Martin Egli. "Visualizing a Circadian Clock Protein". Molecular Cell 15, nr 3 (sierpień 2004): 375–88. http://dx.doi.org/10.1016/j.molcel.2004.07.013.
Pełny tekst źródłaPattanayek, Rekha, Jimin Wang, Tetsuya Mori, Yao Xu, Carl Hirschie Johnson i Martin Egli. "Visualizing a Circadian Clock Protein". Molecular Cell 15, nr 5 (wrzesień 2004): 841. http://dx.doi.org/10.1016/j.molcel.2004.08.027.
Pełny tekst źródłaGabryelska, Agata, Marcin Sochal, Szymon Turkiewicz i Piotr Białasiewicz. "Relationship between HIF-1 and Circadian Clock Proteins in Obstructive Sleep Apnea Patients—Preliminary Study". Journal of Clinical Medicine 9, nr 5 (25.05.2020): 1599. http://dx.doi.org/10.3390/jcm9051599.
Pełny tekst źródłaSingh, Amit, Congxin Li, Axel C. R. Diernfellner, Thomas Höfer i Michael Brunner. "Data-driven modelling captures dynamics of the circadian clock of Neurospora crassa". PLOS Computational Biology 18, nr 8 (11.08.2022): e1010331. http://dx.doi.org/10.1371/journal.pcbi.1010331.
Pełny tekst źródłaHe, Lan, J. Austin Hamm, Alex Reddy, David Sams, Rodrigo A. Peliciari-Garcia, Graham R. McGinnis, Shannon M. Bailey i in. "Biotinylation: a novel posttranslational modification linking cell autonomous circadian clocks with metabolism". American Journal of Physiology-Heart and Circulatory Physiology 310, nr 11 (1.06.2016): H1520—H1532. http://dx.doi.org/10.1152/ajpheart.00959.2015.
Pełny tekst źródłaKippert, Fred. "Cellular signalling and the complexity of biological timing: insights from the ultradian clock of Schizosaccharomyces pombe". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 356, nr 1415 (29.11.2001): 1725–33. http://dx.doi.org/10.1098/rstb.2001.0935.
Pełny tekst źródłaLiu, Zhenxing, Christopher P. Selby, Yanyan Yang, Laura A. Lindsey-Boltz, Xuemei Cao, Khagani Eynullazada i Aziz Sancar. "Circadian regulation of c-MYC in mice". Proceedings of the National Academy of Sciences 117, nr 35 (19.08.2020): 21609–17. http://dx.doi.org/10.1073/pnas.2011225117.
Pełny tekst źródłaUmemura, Yasuhiro, Izumi Maki, Yoshiki Tsuchiya, Nobuya Koike i Kazuhiro Yagita. "Human Circadian Molecular Oscillation Development Using Induced Pluripotent Stem Cells". Journal of Biological Rhythms 34, nr 5 (sierpień 2019): 525–32. http://dx.doi.org/10.1177/0748730419865436.
Pełny tekst źródłaForsyth, Christopher B., Robin M. Voigt, Maliha Shaikh, Yueming Tang, Arthur I. Cederbaum, Fred W. Turek i Ali Keshavarzian. "Role for intestinal CYP2E1 in alcohol-induced circadian gene-mediated intestinal hyperpermeability". American Journal of Physiology-Gastrointestinal and Liver Physiology 305, nr 2 (15.07.2013): G185—G195. http://dx.doi.org/10.1152/ajpgi.00354.2012.
Pełny tekst źródłaMekbib, Tsedey, Ting-Chung Suen, Aisha Rollins-Hairston i Jason P. DeBruyne. "The E3 Ligases Spsb1 and Spsb4 Regulate RevErbα Degradation and Circadian Period". Journal of Biological Rhythms 34, nr 6 (14.10.2019): 610–21. http://dx.doi.org/10.1177/0748730419878036.
Pełny tekst źródłaO’Grady, Joseph F., Laura S. Hoelters, Martin T. Swain i David C. Wilcockson. "Identification and temporal expression of putative circadian clock transcripts in the amphipod crustaceanTalitrus saltator". PeerJ 4 (5.10.2016): e2555. http://dx.doi.org/10.7717/peerj.2555.
Pełny tekst źródłaKelly, Mia N., Danelle N. Smith, Michael D. Sunshine, Ashley Ross, Xiping Zhang, Michelle L. Gumz, Karyn A. Esser i Gordon S. Mitchell. "Circadian clock genes and respiratory neuroplasticity genes oscillate in the phrenic motor system". American Journal of Physiology-Regulatory, Integrative and Comparative Physiology 318, nr 6 (1.06.2020): R1058—R1067. http://dx.doi.org/10.1152/ajpregu.00010.2020.
Pełny tekst źródłaShen, Yang, Mehari Endale, Wei Wang, Andrew R. Morris, Lauren J. Francey, Rachel L. Harold, David W. Hammers i in. "NF-κB modifies the mammalian circadian clock through interaction with the core clock protein BMAL1". PLOS Genetics 17, nr 11 (22.11.2021): e1009933. http://dx.doi.org/10.1371/journal.pgen.1009933.
Pełny tekst źródłaUmemura, Yasuhiro, Nobuya Koike, Munehiro Ohashi, Yoshiki Tsuchiya, Qing Jun Meng, Yoichi Minami, Masayuki Hara, Moe Hisatomi i Kazuhiro Yagita. "Involvement of posttranscriptional regulation of Clock in the emergence of circadian clock oscillation during mouse development". Proceedings of the National Academy of Sciences 114, nr 36 (21.08.2017): E7479—E7488. http://dx.doi.org/10.1073/pnas.1703170114.
Pełny tekst źródłaKon, Naohiro, Hsin-tzu Wang, Yoshiaki S. Kato, Kyouhei Uemoto, Naohiro Kawamoto, Koji Kawasaki, Ryosuke Enoki i in. "Na+/Ca2+ exchanger mediates cold Ca2+ signaling conserved for temperature-compensated circadian rhythms". Science Advances 7, nr 18 (kwiecień 2021): eabe8132. http://dx.doi.org/10.1126/sciadv.abe8132.
Pełny tekst źródłaHassan, Azka, Jamil Ahmad, Hufsah Ashraf i Amjad Ali. "Modeling and analysis of the impacts of jet lag on circadian rhythm and its role in tumor growth". PeerJ 6 (6.06.2018): e4877. http://dx.doi.org/10.7717/peerj.4877.
Pełny tekst źródłaGoda, Tadahiro, Brandi Sharp i Herman Wijnen. "Temperature-dependent resetting of the molecular circadian oscillator in Drosophila". Proceedings of the Royal Society B: Biological Sciences 281, nr 1793 (22.10.2014): 20141714. http://dx.doi.org/10.1098/rspb.2014.1714.
Pełny tekst źródłaTabuloc, Christine A., Yao D. Cai, Rosanna S. Kwok, Elizabeth C. Chan, Sergio Hidalgo i Joanna C. Chiu. "CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters". PLOS Genetics 19, nr 2 (21.02.2023): e1010649. http://dx.doi.org/10.1371/journal.pgen.1010649.
Pełny tekst źródłaCollett, Michael A., Jay C. Dunlap i Jennifer J. Loros. "Circadian Clock-Specific Roles for the Light Response Protein WHITE COLLAR-2". Molecular and Cellular Biology 21, nr 8 (15.04.2001): 2619–28. http://dx.doi.org/10.1128/mcb.21.8.2619-2628.2001.
Pełny tekst źródłaPaijmans, Joris, Mark Bosman, Pieter Rein ten Wolde i David K. Lubensky. "Discrete gene replication events drive coupling between the cell cycle and circadian clocks". Proceedings of the National Academy of Sciences 113, nr 15 (28.03.2016): 4063–68. http://dx.doi.org/10.1073/pnas.1507291113.
Pełny tekst źródłaSen, Liu, i Song Liu. "Evolution Analysis of the Circadian Clock Protein KaiB". Advanced Materials Research 647 (styczeń 2013): 391–95. http://dx.doi.org/10.4028/www.scientific.net/amr.647.391.
Pełny tekst źródłaLarrondo, L. F., C. Olivares-Yanez, C. L. Baker, J. J. Loros i J. C. Dunlap. "Decoupling circadian clock protein turnover from circadian period determination". Science 347, nr 6221 (29.01.2015): 1257277. http://dx.doi.org/10.1126/science.1257277.
Pełny tekst źródłaKim, Jin A., Donghwan Shim, Shipra Kumari, Ha-eun Jung, Ki-Hong Jung, Heesu Jeong, Woe-Yeon Kim, Soo In Lee i Mi-Jeong Jeong. "Transcriptome Analysis of Diurnal Gene Expression in Chinese Cabbage". Genes 10, nr 2 (11.02.2019): 130. http://dx.doi.org/10.3390/genes10020130.
Pełny tekst źródłaMa, Huan, Luyao Li, Jie Yan, Yin Zhang, Xiaohong Ma, Yunzhen Li, Yu Yuan, Xiaolin Yang, Ling Yang i Jinhu Guo. "The Resonance and Adaptation of Neurospora crassa Circadian and Conidiation Rhyth ms to Short Light-Dark Cycles". Journal of Fungi 8, nr 1 (29.12.2021): 27. http://dx.doi.org/10.3390/jof8010027.
Pełny tekst źródłaLim, Chunghun, Jongbin Lee, Changtaek Choi, Juwon Kim, Eunjin Doh i Joonho Choe. "Functional Role of CREB-Binding Protein in the Circadian Clock System of Drosophila melanogaster". Molecular and Cellular Biology 27, nr 13 (23.04.2007): 4876–90. http://dx.doi.org/10.1128/mcb.02155-06.
Pełny tekst źródłaRay, Sandipan, Radoslaw Lach, Kate J. Heesom, Utham K. Valekunja, Vesela Encheva, Ambrosius P. Snijders i Akhilesh B. Reddy. "Phenotypic proteomic profiling identifies a landscape of targets for circadian clock–modulating compounds". Life Science Alliance 2, nr 6 (grudzień 2019): e201900603. http://dx.doi.org/10.26508/lsa.201900603.
Pełny tekst źródłaMcWatters, Harriet. "Pace of life: Complexity at the heart of the plant clock". Biochemist 26, nr 1 (1.02.2004): 15–17. http://dx.doi.org/10.1042/bio02601015.
Pełny tekst źródłaDoruk, Yagmur Umay, Darya Yarparvar, Yasemin Kubra Akyel, Seref Gul, Ali Cihan Taskin, Fatma Yilmaz, Ibrahim Baris i in. "A CLOCK-binding small molecule disrupts the interaction between CLOCK and BMAL1 and enhances circadian rhythm amplitude". Journal of Biological Chemistry 295, nr 11 (4.02.2020): 3518–31. http://dx.doi.org/10.1074/jbc.ra119.011332.
Pełny tekst źródłaDeBruyne, Jason P., Julie E. Baggs, Trey K. Sato i John B. Hogenesch. "Ubiquitin ligase Siah2 regulates RevErbα degradation and the mammalian circadian clock". Proceedings of the National Academy of Sciences 112, nr 40 (21.09.2015): 12420–25. http://dx.doi.org/10.1073/pnas.1501204112.
Pełny tekst źródłaNarasimamurthy, Rajesh, Sabrina R. Hunt, Yining Lu, Jean-Michel Fustin, Hitoshi Okamura, Carrie L. Partch, Daniel B. Forger, Jae Kyoung Kim i David M. Virshup. "CK1δ/ε protein kinase primes the PER2 circadian phosphoswitch". Proceedings of the National Academy of Sciences 115, nr 23 (21.05.2018): 5986–91. http://dx.doi.org/10.1073/pnas.1721076115.
Pełny tekst źródłaCal-Kayitmazbatir, Sibel, Lauren J. Francey, Yool Lee, Andrew C. Liu i John B. Hogenesch. "PSMD11 modulates circadian clock function through PER and CRY nuclear translocation". PLOS ONE 18, nr 3 (24.03.2023): e0283463. http://dx.doi.org/10.1371/journal.pone.0283463.
Pełny tekst źródłaZečević, Ksenija, Nataša Popović, Aleksandra Vuksanović Božarić, Mihailo Vukmirović, Manfredi Rizzo i Emir Muzurović. "Timing Is Important—Management of Metabolic Syndrome According to the Circadian Rhythm". Biomedicines 11, nr 4 (13.04.2023): 1171. http://dx.doi.org/10.3390/biomedicines11041171.
Pełny tekst źródłaCatalano, Federica, Francesca De Vito, Velia Cassano, Teresa Vanessa Fiorentino, Angela Sciacqua i Marta Letizia Hribal. "Circadian Clock Desynchronization and Insulin Resistance". International Journal of Environmental Research and Public Health 20, nr 1 (20.12.2022): 29. http://dx.doi.org/10.3390/ijerph20010029.
Pełny tekst źródła