Artykuły w czasopismach na temat „Chlorophyll Content Prediction”
Utwórz poprawne odniesienie w stylach APA, MLA, Chicago, Harvard i wielu innych
Sprawdź 50 najlepszych artykułów w czasopismach naukowych na temat „Chlorophyll Content Prediction”.
Przycisk „Dodaj do bibliografii” jest dostępny obok każdej pracy w bibliografii. Użyj go – a my automatycznie utworzymy odniesienie bibliograficzne do wybranej pracy w stylu cytowania, którego potrzebujesz: APA, MLA, Harvard, Chicago, Vancouver itp.
Możesz również pobrać pełny tekst publikacji naukowej w formacie „.pdf” i przeczytać adnotację do pracy online, jeśli odpowiednie parametry są dostępne w metadanych.
Przeglądaj artykuły w czasopismach z różnych dziedzin i twórz odpowiednie bibliografie.
Lv, Jie, Feng Li Deng i Zhen Guo Yan. "Using PROSEPCT and SVM for the Estimation of Chlorophyll Concentration". Advanced Materials Research 989-994 (lipiec 2014): 2184–87. http://dx.doi.org/10.4028/www.scientific.net/amr.989-994.2184.
Pełny tekst źródłaLiu, Yang, Jinfei Zhao, Yurong Tang, Xin Jiang i Jiean Liao. "Construction of a Chlorophyll Content Prediction Model for Predicting Chlorophyll Content in the Pericarp of Korla Fragrant Pears during the Storage Period". Agriculture 12, nr 9 (31.08.2022): 1348. http://dx.doi.org/10.3390/agriculture12091348.
Pełny tekst źródłaXu, Yanan, Keling Tu, Ying Cheng, Haonan Hou, Hailu Cao, Xuehui Dong i Qun Sun. "Application of Digital Image Analysis to the Prediction of Chlorophyll Content in Astragalus Seeds". Applied Sciences 11, nr 18 (19.09.2021): 8744. http://dx.doi.org/10.3390/app11188744.
Pełny tekst źródłaZhao, Long, Zhao Mei Qiu, Peng Jun Mao i Gui Yang Deng. "Research on Biological Materials for the Preferred of the Chlorophyll Content Gray GM (1,1) Prediction Models Based on the Different Light". Advanced Materials Research 910 (marzec 2014): 65–69. http://dx.doi.org/10.4028/www.scientific.net/amr.910.65.
Pełny tekst źródłaJin, Xiu Liang, Chang Wei Tan, Jun Chan Wang, Lu Tong, Fen Tuan Yang, Xin Kai Zhu i Wen Shan Guo. "Estimation of Wheat Chlorophyll Content Based on HJ Satellite CCD". Advanced Materials Research 468-471 (luty 2012): 1599–604. http://dx.doi.org/10.4028/www.scientific.net/amr.468-471.1599.
Pełny tekst źródłaAli, Abebe Mohammed, Roshanak Darvishzadeh, Andrew Skidmore, Marco Heurich, Marc Paganini, Uta Heiden i Sander Mücher. "Evaluating Prediction Models for Mapping Canopy Chlorophyll Content Across Biomes". Remote Sensing 12, nr 11 (1.06.2020): 1788. http://dx.doi.org/10.3390/rs12111788.
Pełny tekst źródłaP. SHANMUGAPRIYA, K. R. LATHA, S. PAZHANIVELAN, R. KUMARAPERUMAL, G. KARTHIKEYAN i N. S. SUDARMANIAN. "Cotton yield prediction using drone derived LAI and chlorophyll content". Journal of Agrometeorology 24, nr 4 (2.12.2022): 348–52. http://dx.doi.org/10.54386/jam.v24i4.1770.
Pełny tekst źródłaShafiq Amirul Sabri, Mohd, R. Endut, C. B. M. Rashidi, A. R. Laili, S. A. Aljunid i N. Ali. "Analysis of Near-infrared (NIR) spectroscopy for chlorophyll prediction in oil palm leaves". Bulletin of Electrical Engineering and Informatics 8, nr 2 (1.06.2019): 506–13. http://dx.doi.org/10.11591/eei.v8i2.1412.
Pełny tekst źródłaLarson, James E., Penelope Perkins-Veazie i Thomas M. Kon. "Apple Fruitlet Abscission Prediction. II. Characteristics of Fruitlets Predicted to Persist or Abscise by Reflectance Spectroscopy Models". HortScience 58, nr 9 (wrzesień 2023): 1095–103. http://dx.doi.org/10.21273/hortsci17245-23.
Pełny tekst źródłaDamayanti, R., D. F. A. Riza, A. W. Putranto i R. J. Nainggolan. "Vernonia Amygdalina Chlorophyll Content Prediction by Feature Texture Analysis of Leaf Color". IOP Conference Series: Earth and Environmental Science 757, nr 1 (1.05.2021): 012026. http://dx.doi.org/10.1088/1755-1315/757/1/012026.
Pełny tekst źródłaKrishnapriya, Vengavasi, R. Arunkumar, R. Gomathi i S. Vasantha. "PREDICTION MODELS FOR NON-DESTRUCTIVE ESTIMATION OF TOTAL CHLOROPHYLL CONTENT IN SUGARCANE". Journal of Sugarcane Research 9, nr 2 (31.12.2019): 150. http://dx.doi.org/10.37580/jsr.2019.2.9.150-163.
Pełny tekst źródłaMa, Ling, Yao Zhang, Yiyang Zhang, Jing Wang, Jianshe Li, Yanming Gao, Xiaomin Wang i Longguo Wu. "Rapid Nondestructive Detection of Chlorophyll Content in Muskmelon Leaves under Different Light Quality Treatments". Agronomy 12, nr 12 (19.12.2022): 3223. http://dx.doi.org/10.3390/agronomy12123223.
Pełny tekst źródłaLin, Wenpeng, Xumiao Yu, Di Xu, Tengteng Sun i Yue Sun. "Effect of Dust Deposition on Chlorophyll Concentration Estimation in Urban Plants from Reflectance and Vegetation Indexes". Remote Sensing 13, nr 18 (8.09.2021): 3570. http://dx.doi.org/10.3390/rs13183570.
Pełny tekst źródłaSong, Yufei, Shiwu Li, Zhiguo Liu, Yuekui Zhang i Nan Shen. "Analysis on Chlorophyll Diagnosis of Wheat Leaves Based on Digital Image Processing and Feature Selection". Traitement du Signal 39, nr 1 (28.02.2022): 381–87. http://dx.doi.org/10.18280/ts.390140.
Pełny tekst źródłaShi, Hongzhao, Jinjin Guo, Jiaqi An, Zijun Tang, Xin Wang, Wangyang Li, Xiao Zhao i in. "Estimation of Chlorophyll Content in Soybean Crop at Different Growth Stages Based on Optimal Spectral Index". Agronomy 13, nr 3 (24.02.2023): 663. http://dx.doi.org/10.3390/agronomy13030663.
Pełny tekst źródłaAn, Gangqiang, Minfeng Xing, Binbin He, Chunhua Liao, Xiaodong Huang, Jiali Shang i Haiqi Kang. "Using Machine Learning for Estimating Rice Chlorophyll Content from In Situ Hyperspectral Data". Remote Sensing 12, nr 18 (22.09.2020): 3104. http://dx.doi.org/10.3390/rs12183104.
Pełny tekst źródłaLv, Gang, i Hai Qing Yang. "Nondestructive Measurement of Grape Leaf Chlorophyll Content Using Multi-Spectral Imaging Technology and Calibration Models". Advanced Engineering Forum 1 (wrzesień 2011): 365–69. http://dx.doi.org/10.4028/www.scientific.net/aef.1.365.
Pełny tekst źródłaEswari, Jujjavarapu Satya, Manwendra Kumar Tripathi, Swasti Dhagat i Santosh Kr Karn. "Five Objective Optimization Using Naïve & Sorting Genetic Algorithm (NSGA) for Green Microalgae Culture Conditions for Biodiesel Production". Recent Innovations in Chemical Engineering (Formerly Recent Patents on Chemical Engineering) 12, nr 2 (26.09.2019): 110–21. http://dx.doi.org/10.2174/2405520412666190124163629.
Pełny tekst źródłaLin, W. C., J. W. Hall i A. Klieber. "Video Imaging for Quantifying Cucumber Fruit Color". HortTechnology 3, nr 4 (październik 1993): 436–39. http://dx.doi.org/10.21273/horttech.3.4.436.
Pełny tekst źródłaFlorence, Anna, Andrew Revill, Stephen Hoad, Robert Rees i Mathew Williams. "The Effect of Antecedence on Empirical Model Forecasts of Crop Yield from Observations of Canopy Properties". Agriculture 11, nr 3 (18.03.2021): 258. http://dx.doi.org/10.3390/agriculture11030258.
Pełny tekst źródłaKang, Yeseong, Jinwoo Nam, Younggwang Kim, Seongtae Lee, Deokgyeong Seong, Sihyeong Jang i Chanseok Ryu. "Assessment of Regression Models for Predicting Rice Yield and Protein Content Using Unmanned Aerial Vehicle-Based Multispectral Imagery". Remote Sensing 13, nr 8 (14.04.2021): 1508. http://dx.doi.org/10.3390/rs13081508.
Pełny tekst źródłaJi, Jiangtao, Nana Li, Hongwei Cui, Yuchao Li, Xinbo Zhao, Haolei Zhang i Hao Ma. "Study on Monitoring SPAD Values for Multispatial Spatial Vertical Scales of Summer Maize Based on UAV Multispectral Remote Sensing". Agriculture 13, nr 5 (2.05.2023): 1004. http://dx.doi.org/10.3390/agriculture13051004.
Pełny tekst źródłaKamenova, Ilina, Petar Dimitrov i Rusina Yordanova. "Evaluation of RapidEye vegetation indices for prediction of biophysical/biochemical variables of winter wheat". Aerospace Research in Bulgaria 30 (2018): 63–74. http://dx.doi.org/10.3897/arb.v30.e06.
Pełny tekst źródłaTa, Na, Qingrui Chang i Youming Zhang. "Estimation of Apple Tree Leaf Chlorophyll Content Based on Machine Learning Methods". Remote Sensing 13, nr 19 (29.09.2021): 3902. http://dx.doi.org/10.3390/rs13193902.
Pełny tekst źródłaZhang, Ying, Xiao Hu Zhao i Cai Juan Li. "Soft Sensing for Algae Blooms Based on Physical-Chemical Factors of Marine Environment". Applied Mechanics and Materials 58-60 (czerwiec 2011): 630–35. http://dx.doi.org/10.4028/www.scientific.net/amm.58-60.630.
Pełny tekst źródłaZillmann, E., M. Schönert, H. Lilienthal, B. Siegmann, T. Jarmer, P. Rosso i T. Weichelt. "Crop Ground Cover Fraction and Canopy Chlorophyll Content Mapping using RapidEye imagery". ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-7/W3 (28.04.2015): 149–55. http://dx.doi.org/10.5194/isprsarchives-xl-7-w3-149-2015.
Pełny tekst źródłaAbdel-Sattar, Mahmoud, Adel Al-Saif, Abdulwahed Aboukarima, Dalia Eshra i Lidia Sas-Paszt. "Quality Attributes Prediction of Flame Seedless Grape Clusters Based on Nutritional Status Employing Multiple Linear Regression Technique". Agriculture 12, nr 9 (25.08.2022): 1303. http://dx.doi.org/10.3390/agriculture12091303.
Pełny tekst źródłaYu, Siyao, Haoran Bu, Xue Hu, Wancheng Dong i Lixin Zhang. "Establishment and Accuracy Evaluation of Cotton Leaf Chlorophyll Content Prediction Model Combined with Hyperspectral Image and Feature Variable Selection". Agronomy 13, nr 8 (13.08.2023): 2120. http://dx.doi.org/10.3390/agronomy13082120.
Pełny tekst źródłaQian, Ji, Juan Zhou i Yang Liu. "Labview-based Study on the Modeling Method of Chlorophyll Content Prediction in Tomato Leaves". Advances in Modelling and Analysis B 60, nr 2 (30.06.2017): 416–28. http://dx.doi.org/10.18280/ama_b.600211.
Pełny tekst źródłaPaul, Subir, Vinayaraj Poliyapram, Nevrez Imamoglu, Kuniaki Uto, Ryosuke Nakamura i D. Nagesh Kumar. "Canopy Averaged Chlorophyll Content Prediction of Pear Trees Using Convolutional Autoencoder on Hyperspectral Data". IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 13 (2020): 1426–37. http://dx.doi.org/10.1109/jstars.2020.2983000.
Pełny tekst źródłaYuan, Jianqing, Zhongbin Su, Qingming Kong, Li Kang, Qi Zhang i Yu Zhang. "Hyperspectral Response of Rice Canopy and Prediction of Its Chlorophyll Content in Cold Regions". International Journal of u- and e-Service, Science and Technology 8, nr 10 (31.10.2015): 75–82. http://dx.doi.org/10.14257/ijunesst.2015.8.10.08.
Pełny tekst źródłaHoel, Bernt Olav. "Chlorophyll Meter Readings in Winter Wheat: Cultivar Differences and Prediction of Grain Protein Content". Acta Agriculturae Scandinavica, Section B — Soil & Plant Science 52, nr 4 (styczeń 2002): 147–57. http://dx.doi.org/10.1080/090647103100004843.
Pełny tekst źródłaShanmugapriya, P., K. R. Latha, S. Pazhanivelan, R. Kumaraperumal, G. Karthikeyan i N. S. Sudarmanian. "Spatial prediction of leaf chlorophyll content in cotton crop using drone-derived spectral indices". Current Science 123, nr 12 (25.12.2022): 1473. http://dx.doi.org/10.18520/cs/v123/i12/1473-1480.
Pełny tekst źródłaWang, Jinghua, Xiang Li, Wancheng Wang, Fan Wang, Quancheng Liu i Lei Yan. "Research on Rapid and Low-Cost Spectral Device for the Estimation of the Quality Attributes of Tea Tree Leaves". Sensors 23, nr 2 (4.01.2023): 571. http://dx.doi.org/10.3390/s23020571.
Pełny tekst źródłaEze, Elias, Sam Kirby, John Attridge i Tahmina Ajmal. "Time Series Chlorophyll-A Concentration Data Analysis: A Novel Forecasting Model for Aquaculture Industry". Engineering Proceedings 5, nr 1 (29.06.2021): 27. http://dx.doi.org/10.3390/engproc2021005027.
Pełny tekst źródłaLiu, Chuang, Yi Liu, Yanhong Lu, Yulin Liao, Jun Nie, Xiaoliang Yuan i Fang Chen. "Use of a leaf chlorophyll content index to improve the prediction of above-ground biomass and productivity". PeerJ 6 (11.01.2019): e6240. http://dx.doi.org/10.7717/peerj.6240.
Pełny tekst źródłaQiao, Lang, Dehua Gao, Junyi Zhang, Minzan Li, Hong Sun i Junyong Ma. "Dynamic Influence Elimination and Chlorophyll Content Diagnosis of Maize Using UAV Spectral Imagery". Remote Sensing 12, nr 16 (17.08.2020): 2650. http://dx.doi.org/10.3390/rs12162650.
Pełny tekst źródłaGeorgiopoulou, Ioulia, Soultana Tzima, Georgia D. Pappa, Vasiliki Louli, Epaminondas Voutsas i Kostis Magoulas. "Experimental Design and Optimization of Recovering Bioactive Compounds from Chlorella vulgaris through Conventional Extraction". Molecules 27, nr 1 (22.12.2021): 29. http://dx.doi.org/10.3390/molecules27010029.
Pełny tekst źródłaNemeskéri, Eszter, i Lajos Helyes. "Physiological Responses of Selected Vegetable Crop Species to Water Stress". Agronomy 9, nr 8 (13.08.2019): 447. http://dx.doi.org/10.3390/agronomy9080447.
Pełny tekst źródłaZhu, Jiyou, Weijun He, Jiangming Yao, Qiang Yu, Chengyang Xu, Huaguo Huang i Catherine Mhae B. Jandug. "Spectral Reflectance Characteristics and Chlorophyll Content Estimation Model of Quercus aquifolioides Leaves at Different Altitudes in Sejila Mountain". Applied Sciences 10, nr 10 (24.05.2020): 3636. http://dx.doi.org/10.3390/app10103636.
Pełny tekst źródłaKumar, Chandan, Partson Mubvumba, Yanbo Huang, Jagman Dhillon i Krishna Reddy. "Multi-Stage Corn Yield Prediction Using High-Resolution UAV Multispectral Data and Machine Learning Models". Agronomy 13, nr 5 (28.04.2023): 1277. http://dx.doi.org/10.3390/agronomy13051277.
Pełny tekst źródłaEvans, Marlene S., Richard D. Robarts i Michael T. Arts. "Predicted versus actual determinations of algal production, algal biomass, and zooplankton biomass in a hypereutrophic, hyposaline prairie lake". Canadian Journal of Fisheries and Aquatic Sciences 52, nr 5 (1.05.1995): 1037–49. http://dx.doi.org/10.1139/f95-102.
Pełny tekst źródła王, 博. "Prediction of Chlorophyll Content in Rice under Arsenic Stress Based on Dynamic Fuzzy Neural Network Model". Advances in Environmental Protection 07, nr 05 (2017): 404–13. http://dx.doi.org/10.12677/aep.2017.75054.
Pełny tekst źródłaMatsunaka, Teruo, Yuji Watanabe, Tadashi Miyawaki i Nobuo Ichikawa. "Prediction of grain protein content in winter wheat through leaf color measurements using a chlorophyll meter". Soil Science and Plant Nutrition 43, nr 1 (marzec 1997): 127–34. http://dx.doi.org/10.1080/00380768.1997.10414721.
Pełny tekst źródłaHaboudane, Driss, John R. Miller, Nicolas Tremblay, Pablo J. Zarco-Tejada i Louise Dextraze. "Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture". Remote Sensing of Environment 81, nr 2-3 (sierpień 2002): 416–26. http://dx.doi.org/10.1016/s0034-4257(02)00018-4.
Pełny tekst źródłaCroft, H., J. M. Chen, Y. Zhang, A. Simic, T. L. Noland, N. Nesbitt i J. Arabian. "Evaluating leaf chlorophyll content prediction from multispectral remote sensing data within a physically-based modelling framework". ISPRS Journal of Photogrammetry and Remote Sensing 102 (kwiecień 2015): 85–95. http://dx.doi.org/10.1016/j.isprsjprs.2015.01.008.
Pełny tekst źródłaWibowo, Fachrina. "Prediction of gene action content of Na, K, and Chlorophyll for Soybean Crop Adaptation to Salinity". JERAMI Indonesian Journal of Crop Science 2, nr 1 (1.09.2019): 21–28. http://dx.doi.org/10.25077/jijcs.2.1.21-28.2019.
Pełny tekst źródłaPutra, Kielvien Lourensius Eka Setia, Fabian Surya Pramudya, Alexander Agung Santoso Gunawan i Prasetyo Mimboro. "Predicting Nitrogen Content in Oil Palms through Machine Learning and RGB Aerial Imagery". International Journal of Emerging Technology and Advanced Engineering 13, nr 6 (25.06.2023): 19–27. http://dx.doi.org/10.46338/ijetae0623_03.
Pełny tekst źródłaZeng, Linglin, Guozhang Peng, Ran Meng, Jianguo Man, Weibo Li, Binyuan Xu, Zhengang Lv i Rui Sun. "Wheat Yield Prediction Based on Unmanned Aerial Vehicles-Collected Red–Green–Blue Imagery". Remote Sensing 13, nr 15 (26.07.2021): 2937. http://dx.doi.org/10.3390/rs13152937.
Pełny tekst źródłaMineeva, N. M. "Evaluation of Nutrient-Chlorophyll Relationships in the Rybinsk Reservoir". Water Science and Technology 28, nr 6 (1.09.1993): 25–28. http://dx.doi.org/10.2166/wst.1993.0125.
Pełny tekst źródła